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Abstract

The ECE laws of classical dynamics and electrodynamics are based on the
Bianchi identity and their duality, covariance and invariance properties in
general relativity are also based directly on Cartan geometry. It is shown
that the vacuum equations are generally invariant, and that the field matter
equations are generally covariant. The structure of the components of the
electric and magnetic fields is also determined by the Bianchi identity, and
there exist Hodge duals of both the vacuum and field matter equations. In
general the equations transform according to the rules of Cartan geometry.
The general coordinate transformation becomes the Lorentz transformation
in the limit of Minkowski space-time.
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22.1 Introduction

Recently [1–10] the generally covariant laws of dynamics and electrodynam-
ics have been developed with Cartan geometry [11]. It has been found that
they are based on the Bianchi identity of Cartan geometry and the Hodge
dual identity. The laws of classical electrodynamics are the same in over-
all format as the familiar Maxwell Heaviside (MH) field equations of special
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relativity, but the Einstein Cartan Evans (ECE) laws are written in a space-
time with torsion and curvature, and give more information, notably they
include the spin connection of space-time. The ECE laws of dynamics are
the same in structure as those of electrodynamics, so there are four laws
of generally covariant dynamics, akin to the Gauss, Faraday, Coulomb and
Ampère-Maxwell laws of classical ECE electrodynamics. In both subject areas
there are two orbital laws (Gauss and Coulomb) and two spin laws (Faraday
and Ampère Maxwell). The Gauss and Faraday laws refer to the free field
or vacuum field and the Coulomb and Ampère Maxwell laws refer to field
matter interaction. In Section 22.2, the properties of these laws under coor-
dinate transformation are developed using the methods [1–11] of geometry.
It is found that the free field or vacuum laws are invariant under coordinate
transformation, and that the field - matter laws are covariant under coordi-
nate transformation. In Section 22.3 the Hodge duality properties of the laws
are given in the vacuum and in the presence of field matter interaction.

22.2 Invariance and Covariance

In previous work [1–10] it has been shown that the homogeneous laws of
dynamics and electrodynamics are based on the geometrical structure:

DµT̃κµν = R̃κ
µ

µν (22.1)

where T̃κµν is a rank three torsion tensor and where R̃κ µν
µ is a rank four

curvature tensor. The Dµ denotes covariant derivative in a space-time with
torsion and curvature [11]. The inhomogeneous laws are based on the Hodge
dual of Eq. (22.1):

DµTκµν = Rκ
µ

µν . (22.2)

These equations can be rearranged to give:

∂µT̃κµν = j̃κν (22.3)

and

∂µTκµν = jκν (22.4)

where the right hand side terms include the spin connection in their structure.
It has been shown that Eqs. (22.3) and (22.4) give the equations of dynamics
in generally covariant unified field theory [1–10]. If a primordial voltage is
defined by:

φ = cA(0) (22.5)
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where c is the vacuum speed of light, the equations of classical electrodynam-
ics are given by the fundamental hypothesis:

Fκµν = A(0)Tκµν (22.6)

which defines the electromagnetic field tensor in terms of the torsion tensor.
The ECE equations of electrodynamics are therefore:

∂µF̃κµν = A(0)jκν , (22.7)

∂µFκµν = A(0)j̃κν′
. (22.8)

Experimentally it is found that:

∂µF̃κµν = 0, (22.9)

∂µFκµν = A(0)jκν , (22.10)

because a magnetic monopole (part of jκν) has never been observed. There
have been some claims to magnetic monopole observation, but these claims
appear not to be reproducible. For all practical purposes therefore the ECE
laws of classical electrodynamics are:

∂µF̃κµν = 0, (22.11)
∂µFκµν = Jκν/ε0. (22.12)

For comparison, the MH laws are well known to be:

∂µF̃µν = 0, (22.13)
∂µFµν = Jν/ε0. (22.14)

The main differences between the ECE and MH laws include the fact that the
latter are restricted to Minkowski space-time, whereas the former are written
in a space-time with torsion and curvature present and are part of a generally
covariant unified field. In ECE theory the electromagnetic field is the correct
rank three tensor related [1–10] to canonical angular momentum/energy den-
sity as required in general relativity. In MH theory the electromagnetic field
is a rank two tensor which is an integral [12–14] over a rank three density.

The concept of vacuum electromagnetic field is used routinely in classical
electrodynamics and is defined as the field propagating infinitely far from its
source. This concept is a mathematical limit, not a physical reality, because
without a source there is no field. However, if we transfer this concept of the
received view to ECE theory the vacuum field is defined by:

∂µF̃κµν = 0 (22.15)
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∂µFκµν = 0 (22.16)

and in vector notation the ECE vacuum equations of electrodynamics are:

∇ · B = 0. (22.17)

∇ × E +
∂B

∂t
= 0, (22.18)

∇ · E = 0, (22.19)

∇ × B − 1
c2

∂E

∂t
= 0, (22.20)

in which B is the magnetic flux density in tesla and E is the electric field
strength in volts per meter. Eqs. (22.17) and (22.19) are laws of orbital torsion
[1–10] in which the field components are defined by:

B = B001i + B002j + B003k (22.21)

and

E = E010i + E020j + E030k (22.22)

respectively. Eq. (22.18) is a law of spin torsion in which:

E = E332i + E113j + E221k (22.23)

and:

B = B101i + B202j + B303k (22.24)

and Eq. (22.20) is a law of spin torsion in which:

E = E110i + E220j + E330k (22.25)

and

B = B332i + B113j + B221k. (22.26)

The right hand sides of Eqs. (22.15) and (22.16) are null rank two tensors. If
the latter is denoted by:

Xµν = 0 (22.27)
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it transforms as another null tensor:

X ′µν =
∂xµ′

∂xµ

∂xν′

∂xν
Xµν = 0 (22.28)

where xµ is the coordinate four-vector [1–11]. Therefore this property is nec-
essary and sufficient to show that the ECE vacuum equations are generally
invariant. This means that the equations are the same under arbitrary coor-
dinate transform from a frame K to K′. In contrast the vacuum MH equations
are invariant only under the Lorentz transform from frame K to K′. In other
words the ECE equations are those of a generally covariant unified field, and
the MH equations are those of Lorentz covariant and un-unified field. Note
carefully that the electromagnetic field tensor itself transforms as a rank three
tensor as follows [1–11]:

Tκµν′
=

(
∂xκ′

∂xκ

)(
∂xµ′

∂xν

)(
∂xν′

∂xν

)
Tκµν (22.29)

and is not invariant. It is well known that the MH field tensor transform as a
rank two tensor using two Lorentz transform matrices. They are transformed
from frame K to a frame K′ moving at a constant velocity v with respect to
K. When:

v/c � 1 (22.30)

this type of transform produces:

E′ = E + v × B (22.31)

and

B′ = B − 1
c2

v × E, (22.32)

and the Lorentz force law is:

F = e(E + v × B) (22.33)

where e is a charge. So the transform of frames has a physical effect. Simi-
larly in ECE theory the general transform (22.29) will have a physical effect.
Therefore coordinate transform of the vacuum ECE field equations leaves
them invariant, but the fields themselves are changed.
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In order to develop the concept of coordinate transform the general rule
for any tensor is [11]:

T
µ′

1...µ′
κ

ν′1...ν′
�

=

(
∂xµ′1

∂xµ1
. . .

∂xµ′
κ

∂xµκ

)(
∂xν1

∂xν′
1

. . .
∂xν

�

∂xν
�′

)
Tµ1···µκ

ν1···ν�
(22.34)

For a mixed index tensor in Cartan geometry [1–10]:

T a′µ′
b′ν′ = Λa′

a

∂xµ′

∂xµ
Λb

b′
∂xν

∂xν′ T
aµ
bν (22.35)

where Λa′
a denotes Lorentz transform of the Minkowski tangent space-time at

point P to the base manifold. The partial derivative transforms as:

∂µ′ =
∂xµ

∂xµ′ ∂µ. (22.36)

The covariant derivative of a vector transforms as:

(DµV ν)′ =
∂xµ

∂xµ′
∂xν′

∂xν
DµV ν (22.37)

because by definition Dµ is covariant, whereas ∂µ acting on a tensor produces
extra terms. For example the homogeneous MH equation transforms using
the Leibniz theorem as:

(∂µF̃µν)′ = Λν′
ν ∂µF̃µν + Λµ

µ′ F̃
µν∂µ(Λµ′

µ Λν′
ν ) (22.38)

and because of the second term on the right hand side the homogeneous
MH equation would appear not to transform covariantly. However, using Eq.
(22.28) it is known that:

(∂µF̃µν)′ = ∂µF̃µν = 0 (22.39)

so the homogeneous MH equation is frame invariant.
Similarly the homogeneous ECE equation transforms as:

(∂µF̃κµν)′ =
∂xν′

∂xν

∂xκ′

∂xκ
∂µF̃κµν + F̃κµν∂µ

(
∂xµ′

∂xµ

∂xν′

∂xν

∂xκ′

∂xκ

)
(22.40)

and from Eq. (22.15):

(∂µF̃κµν)′ = ∂µF̃κµν = 0. (22.41)
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For example, consider a rotation of the ECE Gauss law about the Z axis and
without loss of generality assume that:

κ′ = κ = 0 (22.42)

so

∂xκ′

∂xκ
= 1. (22.43)

For rotation about the Z axis:

∂xν′

∂xν
=

⎡⎢⎢⎣
1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 0

⎤⎥⎥⎦ . (22.44)

Therefore: ⎡⎢⎢⎣
V 0′

V 1′

V 2′

V 3′

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

V 0

V 1

V 2

V 3

⎤⎥⎥⎦ (22.45)

which is equivalent to the rotation of a four-vector:

V 0′
= V 0 (22.46)

V 1′
= V 0 cos θ + V 1 sin θ

V 2′
= V 1 sin θ + V 2 cos θ

V 3′
= V 3.

The time-like part of this vector is:

V 0 = ∇ · B, (22.47)

and the space-like part is:

V = ∇ × E +
∂B

∂t
, (22.48)

where the components are:

V 1 = VX =
(

∇ × E +
∂B

∂t

)
X

(22.49)
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and so on. The structure of this vector is derived from the vector equivalent
of Eq. (22.15):

∂µF̃ 0µν = 0 := V ν (22.50a)
∇ · B = 0

∇ × E +
∂B

∂t
= 0 (22.50b)

and the vector is defined by:

V ν =
(

c∇ · B, ∇ × E +
∂B

∂t

)
= 0. (22.51)

The rotation of the column vector about the Z axis is therefore:

V ν′ = Λν′
νV ν (22.52)

which gives the four equations:

(∇ · B)′ = ∇ · B = 0 (22.53)(
∇ × E +

∂B

∂t

)′

X

=
(

∇ × E +
∂B

∂t

)
X

= 0 (22.54)

The rotation of the ECE Gauss law about the Z axis is given by Eq. (22.46a),
from which:

(∇′ · B′ = 0) = (∇ · B = 0). (22.55)

This result means that the ECE Gauss law is invariant under Z axis rotation,
Q.E.D. This is an example of the fact that the ECE Gauss law is invariant
under any type of transform from frame K to K′.

Similarly, Eq. (22.46b) gives the transform under Z axis rotation of the X
component of the ECE Faraday law:

(
∇ × E +

∂B

∂t

)′

X

= c∇ · B cos θ +
(

∇ × E +
∂B

∂t

)
X

sin θ = 0. (22.56)

Using the K frame results:

c∇ · B =
(

∇ × E +
∂B

∂t

)
X

= 0 (22.57)
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it is found that: (
∇ × E +

∂B

∂t

)′

X

= 0 (22.58)

and Z axis rotation gives us the original equation again, QED. Similarly for
the Y and Z components of the ECE Faraday law. The same result is true
for the MH Gauss and Faraday laws, which are also invariant under Z axis
rotation. As argued, the basic reason for the invariance is that a null tensor
in frame K is a null tensor in frame K′ (Eq. (22.28)).

Adopting differential form notation [1–11] the free space or vacuum ECE
equations of classical electrodynamics are defined by:

d ∧ F̃ a = 0 (22.59)

and

d ∧ F a = 0. (22.60)

Therefore in the vacuum:

R̃a
b ∧ qb = ωa

b ∧ T̃ b (22.61)

and

Ra
b ∧ qb = ωa

b ∧ T b. (22.62)

As shown in precious ECE papers this vacuum geometry can be interpreted
to mean that the spin connection form ωa

b is the tensor dual of the tetrad
form:

ωa
b = −κ

2
εa

bcq
c (22.63)

and that the curvature form is the tensor dual of the torsion form:

Ra
b = −κ

2
εa

bcT
c. (22.64)

Here k
2 is a proportionality coefficient with the units of wave-number. Such

dualities define the vacuum electromagnetic field in ECE theory, and also
the vacuum dynamical field. They are analogous to, and generalize, the well
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known duality in Euclidean space between an axial vector Vk and a anti-
symmetric tensor Vij :

Vij =
1
2
εijkVk (22.65)

where εijk is the rank three totally anti-symmetric unit tensor. For example the
rotation generator is, within a factor −i, an anti-symmetric unit tensor dual
to an axial vector. Therefore Eq (22.58) and its Hodge dual (22.59) define the
motion for example of a vacuum plane wave, both in ECE electrodynamical
radiation and in ECE gravitational radiation. For a plane wave propagating
in the Z axis, the motion is a rotation about the Z axis superimposed on
translation. The electric and magnetic components of the plane wave are:

E =
E(0)

√
2

(i − ij) exp(i(ωt − κZ)) (22.66)

and

B =
B(0)

√
2

(ii + j) exp(i(ωt − κZ)) (22.67)

where ω is the angular frequency of the wave at instant t, and κ is its wave-
number at point Z. The mathematical law (22.58) indicates that E and B
of the plane wave will transform covariantly in general. However the vacuum
plane wave is already propagating at c, so the addition of v to c in special rela-
tivity produces c again by the velocity addition law of special relativity [1–12].
This law is derived from the Lorentz transform as is well known. So vacuum
plane waves propagating at c are invariant under the Lorentz transform. They
are already propagating at c and cannot travel faster than c. In ECE theory
the constancy of c is also a fundamental hypothesis and plane waves such
as (22.65) and (22.66) are also solutions in ECE theory. Note carefully that
plane waves are mathematical idealizations, not physical entities.

In vector notation the inhomogeneous field equation (22.10) can be written
as the two vector equations that constitute the Coulomb law:

∇ · D = ρ (22.68)

and the Ampère Maxwell law:

∇ × H − ∂D

∂t
= J (22.69)
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where D is the electric displacement and where H is the magnetic field
strength. Here J is the current density and ρ is the charge density. The electric
displacement in the Coulomb law is defined by an orbital torsion as follows:

D = D010i + D020j + D030k (22.70)

The magnetic field strength in the Ampère Maxwell law is defined in terms
of spin torsion as:

H = H332i + H113j + H221k. (22.71)

and the electric displacement in the Ampère Maxwell law is defined in terms
of spin torsion by:

D = D110i + D220j + D330k. (22.72)

Using the methods given above for the vacuum laws, it is found that under
a Z axis rotation the ECE Coulomb and Ampère Maxwell laws are generally
covariant. Under the arbitrary transformation from frame K to K′ the laws
in frame K′ become:

(∇ · D = ρ) → (∇ · D = ρ)′ (22.73)

and (
∇ × H − ∂D

∂t
= J

)
→
(

∇ × H − ∂D

∂t
= J

)′
. (22.74)

They retain their vector format but

D → D′, ρ → ρ′, H → H ′, J → J ′ (22.75)

and:

∇ → ∇′,
∂

∂t
→ ∂

∂t
, (22.76)

So the general transformation in this case produces new physical effects, the
essential reason being that the charge current density is changed.

As argued, the vacuum field equations of both ECE and the standard
model are invariant under respectively the general coordinate transformation
and the Lorentz transformation, while the vacuum fields E and B themselves
change. One consequence of this property is that the standard model is unable
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to describe the Faraday disk generator - the well known Faraday paradox. In
the K frame the Faraday law of induction in the standard model is:

∇ × E +
∂B

∂t
= 0 (22.77)

and in order for induction to take place of a field E by a field B the experi-
mental condition needed is:

∂B

∂t
�= 0. (22.78)

In the Faraday disk generator this condition is not fulfilled. The generator
consists of a disk of uncharged metal placed on a magnet. The condition
for induction is that the disk rotates relative to the observing apparatus in
frame K. Whether or not the magnet is static or spinning about its own Z
axis:

∂B

∂t
= 0 (22.79)

and no induction of E occurs according to Eq. (22.76). This paradox is not
resolved by Lorentz transformation, under which Eq. (22.76) stays the same
and under which the E and B fields change as in Eqs. (22.31) and (22.32).
After Lorentz transformation therefore:

∇ × (E + V × B) +
∂

∂t

(
B − 1

c2
V × E

)
= 0. (22.80)

Using Eq. (22.76):

∇ × (v × B) − 1
c2

∂

∂t
(v × E) = 0. (22.81)

Now use the vector identities [15]:

∇ × (a × b) = a∇ · b − b∇ · a + (b · ∇)a − (a · ∇)b = 0 (22.82)

and

a × (∇ × a) =
1
2
∇a2 − (a · ∇)a (22.83)

to find that:

∇ × (v × B) = v∇ · B − B∇ · v + (B · ∇)v − (v · ∇)B. (22.84)
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For a constant v:

∇ × (v × B) = −(v · ∇)B. (22.85)

From Eq. (22.82):

v × (∇ × B) =
1
2
∇(v · B) − (v · ∇)B = −(v · ∇)B (22.86)

for constant v. Therefore:

∇ × (v × B) = v × (∇ × B) (22.87)

and for constant v:

∂

∂t
(v × E) = v × ∂E

∂t
. (22.88)

So Eq. (22.79) is:

v ×
(

∇ × B − 1
c2

∂E

∂t

)
= 0 (22.89)

which is the vacuum Ampère Maxwell law of the standard model cross mul-
tiplied by v. Therefore the Lorentz transformation has produced the Hodge
dual of the Faraday law, which is the vacuum Ampère Maxwell law:

∇ × B − 1
c2

∂E

∂t
= 0. (22.90)

Since:

∇ × B = 0 (22.91)

experimentally the B field cannot again induce an E field in the standard
model, and the Faraday paradox remains in the standard model. There have
been some claims in the literature that Lorentz induction explains the Faraday
disk, but these are based on the transform of E, neglecting the transform of
B. When both transforms are accounted for correctly it is seen that(

∇ × E +
∂B

∂t

)′
= 0 (22.92)

and there is no induction of E by B in any frame of reference, contrary to
observation. This result is shown in another way by noting that the linear
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velocity at the rim of a disk rotating at an angular frequency Ω is the real
part of:

v =
v(0)

√
2

(i − ij) exp(iΩt) (22.93)

which is:

Real (v) =
v(0)

√
2

(j cos(Ωt) + j sin(Ωt)). (22.94)

The Lorentz transform of the electric field:

E′ = E + v × B (22.95)

produces:

v × B = v(0) B(0)

√
2

(i sin(Ωt) − j cos(Ωt)) (22.96)

where:

B = B(0)k, (22.97)

which is the product of v(0) with a rotating magnetic field:

B = −B(0)

√
2

(ii + j) exp(iΩt) (22.98)

which has the real part of:

Real (B) =
B(0)

√
2

(i sin(Ωt) − j cos(Ωt)). (22.99)

The Lorentz transform does not produce a rotating electric field as claimed
for example by Feynman [16]. It produces a rotating magnetic field. Also,
when rotation is present, the inertial Lorentz transform is not applicable, and
the standard model cannot explain the Faraday paradox. For this ECE theory
is needed [1–10].

In contrast to the standard model the ECE explanation of the Faraday
disk generator is based directly on the fundamental hypothesis:

Aa
µ = A(0)qa

µ (22.100)
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that a vector potential is generated by the Cartan tetrad. The disk rotates
at an angular frequency Ω and generates the potential [1–10]:

A(2) = A(2)∗ =
A(0)

√
2

(i − ij)eiΩt (22.101)

where the C negative A is the magnitude of the vector potential of the magnet.
From the ECE equations linking the field and potential, the following rotating
electric field is generated:

E(2) = E(1)∗ = −
(

∂

∂t
+ iΩ

)
A(2) (22.102)

where the spin connection in units of inverse meters is:

ω =
Ω
c

. (22.103)

The real part of this electric field rotates around the rim of the Faraday
disk and is detected by apparatus in the observer frame K. As observed
experimentally, E(1) is proportional to Ω multiplied by A(0), the magnitude
of the vector potential of the magnetic flux density B. As noted, the standard
model has no explanation for the Faraday disk generator.

Similarly the standard model has no explanation for the Sagnac effect,
which is a phase shift induced by rotation. As argued, the free space Maxwell
Heaviside (MH) equations are invariant under frame rotation, so they cannot
explain the Sagnac effect because their solutions are the same in any frame of
reference. This has been a well known cause of difficulty since the effect was
discovered in 1913, and in the standard physics there continues to be no satis-
factory explanation for the effect. In ECE theory [1–10] the effect is explained
in the same way as the Faraday disk. A vector potential rotates around the
platform of the Sagnac interferometer (ring laser gyroscope). Rotation to the
left is described by:

A
(2)
L =

A(0)

√
2

(i − ij) exp (iω1t) (22.104)

and to the right by:

A
(2)
R =

A(0)

√
2

(i + ij) exp (iω1t). (22.105)
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When the platform is at rest the time delay is:

∆t = 2π
(

1
ω1

− 1
ω1

)
= 0. (22.106)

Eqs. (22.103) and (22.104) are tetrad equations of spinning space-time, a
concept that does not exist in standard electrodynamics. In ECE theory the
electromagnetic field is the frame of reference itself, so a beam of light trav-
eling in a circular path is equivalent to a rotating tetrad multiplied by A(0),
giving Eq. (22.103). When the platform is spun left at an angular frequency Ω:

ω1 → ω1 + Ω (22.107)

for the left rotating beam and:

ω1 → ω1 − Ω (22.108)

for the right rotating beam. This is because the rotating platform causes an
additional or subtractive frame rotation, i.e. of space-time itself. There is a
time delay for light going around a right or left spinning platform:

∆t = 2π
(

1
ω1 − Ω

− 1
ω1 + Ω

)
(22.109)

which is the well known Sagnac effect.
Experimentally it is found that:

∆t =
4
c2

ArΩ (22.110)

where Ar is the area of the platform. For a circular platform:

Ar = πr2 (22.111)

and experimentally:

Ω � ω1 (22.112)

so

ω1 =
c

r
:= κ1c. (22.113)

The Sagnac effect is therefore an effect of spinning space-time, and
Eq. (22.113) defines the frequency ω1 and wave-number k1 for a platform
radius r.
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22.3 Hodge Duality

In this section Hodge dual transformations are defined for free and interacting
fields in ECE theory. In index-less shorthand notation [1–10] the Bianchi
identity is:

D ∧ T := R ∧ q (22.114)

and its Hodge dual is:

D ∧ T̃ := R̃ ∧ q. (22.115)

These equations are written as:

d ∧ T = j = R ∧ q − ω ∧ T (22.116)

d ∧ T̃ = j̃ = R̃ ∧ q − ω ∧ T̃ . (22.117)

Free fields are defined by the geometry:

j = j̃ = 0 (22.118)

i.e.

R ∧ q = ω ∧ T, (22.119)

R̃ ∧ q = ω ∧ T̃ . (22.120)

The free field is defined as the field infinitely distant from its source, a math-
ematical limit defined by:

j → 0, (22.121)

j̃ → 0. (22.122)

Therefore the free field geometry is:

d ∧ T → 0, (22.123)

d ∧ T̃ → 0. (22.124)

a) Free Electromagnetic Field
Use the ECE hypothesis:

F = A(0)T (22.125)
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to find the ECE equations of the free electromagnetic field:

d ∧ F = 0, (22.126)

d ∧ F̃ = 0. (22.127)

These equations imply:

R ∧ A = ω ∧ F, (22.128)

R̃ ∧ A = ω ∧ F̃ . (22.129)

For the free field, propagating in vacuo at c, the spin connection is of the same
order as the torsion, tetrad and curvature. Therefore this is not Minkowski
space-time because the free field is due to space-time torsion. In a Minkowski
space-time, the torsion, curvature and spin connection all vanish.

Translating into vector notation, Eqs. (22.125) and (22.126) become the
familiar:

∇ · B = 0, (22.130)

∇ × E +
∂B

∂t
= 0, (22.131)

∇ · E = 0, (22.132)

∇ × B − 1
c2

∂E

∂t
= 0. (22.133)

For example, the Coulomb law for the free field is Eq. (22.131), with the
solution:

E → 0. (22.134)

This result means that in electro-statics, the static electric field tends to zero
if the distance between two charges approaches infinity. This result can be
seen from the Coulomb law:

F =
e1e2

4πε0r3
r (22.135)

where:

E =
e2

4πε0r3
r. (22.136)

Here e1 is a charge interacting with e2, ε0 is the S.I. vacuum permittivity, r
is the radial coordinate, and F is the Coulomb force of repulsion. In electro-
dynamics there are plane wave solutions to Eqs. (22.129) to (22.132), plane
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waves which propagate through the vacuum infinitely distant from the source.
This is a mathematical concept. The plane waves are:

E =
E(0)

√
2

(i − ij) exp(i(ωt − κ · r)) (22.137)

and

B =
B(0)

√
2

(ii + j) exp(i(ωt − κ · r)) (22.138)

and there are other types of dynamical solution such as spherical waves based
on spherical harmonics. The plane waves have angular frequency ω at an
instant t, and wave-number k at position r.

b) Free Gravitational Fields
The free gravitational fields are defined in ECE theory by equations which

have the same structure as (22.129) to (22.132) [1–10]:

∇ · h = 0, (22.139)

∇ × g +
1
c

∂h

∂t
= 0, (22.140)

∇ · g = 0, (22.141)

∇ × h − 1
c

∂g

∂t
= 0, (22.142)

where g is the acceleration due to gravity (an orbital component of torsion).
Eq. (22.140) can be interpreted in the same way as Eq. (22.131) for the static
electric field. The Newton inverse square law is a well defined limit of ECE
theory and is a (negative valued) force of attraction between two masses m
and M:

F = −mMG

r3
r (22.143)

in which:

g = −mG

r3
r (22.144)

from the weak equivalence principle. Therefore for infinitely distant masses
the acceleration due to gravity approaches zero, which is the physical inter-
pretation of Eq. (22.140). Eqs. (22.138) to (22.141) show that besides this well
known law, there are three other laws of classical gravitation whose structure
is the same as the laws of classical electrodynamics. This is a major result of
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the EEC unified field theory. The classical vacuum is defined as the absence
of mass and charge, so:

E → 0, g → 0 (22.145)

in the vacuum.
The radiated gravitational plane waves are evidently:

g =
g(0)

√
2

(ii − j) exp(i(ωt − κ · r)) (22.146)

and

h =
h(0)

√
2

(ii + j) exp(i(ωt − κ · r)) (22.147)

and are about twenty one orders of magnitude weaker in the laboratory than
the radiated plane waves of classical electromagnetism. Note carefully that
gravitational radiation cannot be deduced from the Einstein field equation,
because of the latter’s neglect of torsion. As shown in papers 93 and following
on www.aias.us, the neglect of torsion leads to an incorrect geometry, so noth-
ing can be deduced form the Einstein field equation. The latter is regarded
in ECE theory as obsolete.

When fields interact with matter the basic geometry is:

d ∧ T = (R ∧ q − ω ∧ T )int (22.148)

and its Hodge dual:

d ∧ T̃ = (R̃ ∧ q − ω ∧ T̃ )int. (22.149)

a) In electrodynamics in the laboratory, the magnetic monopole is unmeasur-
ably small experimentally, so

d ∧ F → 0, (22.150)

d ∧ F̃ = j̃/ε0. (22.151)

Eqs. (22.149) and (22.150) translate into the free field homogeneous equations:

∇ · B = 0, (22.152)

∇ × E +
∂B

∂t
= 0, (22.153)
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and the field matter inhomogeneous equations:

∇ · D = ρ, (22.154)

∇ × H − ∂D

∂t
= J , (22.155)

where E is the electric field strength, B is the magnetic flux density, D is the
electric displacement, ρ is the electric charge density, H is the magnetic field
strength, and J is the electric current density. The displacement is defined
as:

D = ε0E + P (22.156)

where P is the electric polarization, and the magnetic field strength is defined
by:

B = µ0(H + M) (22.157)

where M is the magnetization and µ0 is the magnetic vacuum permeability
[1–10].

In general, an asymmetric connection must be used to find j in Eq.
(22.150). The Hodge dual of the interaction current:

j̃ := (R̃ ∧ q − ω ∧ T̃ )int (22.158)

is another interaction current:

j := (R ∧ q − ω ∧ T )int. (22.159)

Therefore the Hodge dual of the pair of vector equations:

∇ · D = ρ, (22.160)

∇ × H +
∂D

∂t
= J (22.161)

is

∇ · H = −∇ · M := ρ̃, (22.162)

∇ × D +
1
c2

∂H

∂t
= ∇ × P − 1

c2

∂M

∂t
:= J (22.163)

where we have used Eqs. (22.151) and (22.152). The Hodge dual of these
latter equations are Eqs. (22.131) and (22.132).
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b) The interaction of the gravitational field with matter is given by:

d ∧ T̃ = j̃int = (R̃ ∧ q − ω ∧ T̃ )int (22.164)

so that Eq. (141) for example, becomes:

∇ · g = 4πGρm (22.165)

where G is the Newton constant and ρm is the mass density [1–10]. This
is the gravitational analogue of the Coulomb law (22.159). In ECE theory
there is also a gravitational analogue of Eq. (22.160), a law that should be
investigated experimentally. The gravitational law (22.139) has already been
observed by Tajmar, de Matos et al. [16].

The homogeneous gravitational current:

j = (R ∧ q − ω ∧ T )free (22.166)

must be interpreted carefully as being due to the interaction of gravitational
and electromagnetic fields infinitely far from their sources. This type of inter-
action in classical electrodynamics would mean that the Gauss law of mag-
netism and Faraday law of induction become minutely different due to the
existence of a magnetic charge density (monopole) and magnetic current den-
sity. The magnetic charge density or monopole, and the magnetic current
density are both due to the geometry of Eq. (22.1). This is a concept of gen-
eral relativity and not of special relativity. The ECE magnetic monopole is
not a Dirac monopole, and not a topological monopole of gauge theory in
special relativity. The ECE monopole is due to the geometry of space-time.
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