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The Evans wave equation is derived from the appropriate Lagrangian
and action, identifying the origin of the Planck constant ~ in general
relativity. The classical Fermat principle of least time, and the clas-
sical Hamilton principle of least action, are expressed in terms of a
tetrad multiplied by a phase factor exp(iS/~), where S is the action in
general relativity. Wave (or quantum) mechanics emerges from these
classical principles of general relativity for all matter and radiation
fields, giving a unified theory of quantum mechanics based on differen-
tial geometry and general relativity. The phase factor exp(iS/~) is an
eigenfunction of the Evans wave equation and is the origin in general
relativity and geometry of topological phase effects in physics, includ-
ing the Aharonov-Bohm class of effects, the Berry phase, the Sagnac
effect, related interferometric effects, and all physical optical effects
through the Evans spin field B(3) and the Stokes theorem in differen-
tial geometry. The Planck constant ~ is thus identified as the least
amount possible of action or angular momentum or spin in the uni-
verse. This is also the origin of the fundamental Evans spin field B(3),
which is always observed in any physical optical effect. It originates in
torsion, spin and the second (or spin) Casimir invariant of the Einstein
group. Mass originates in the first Casimir invariant of the Einstein
group. These two invariants define any particle.

Key words: Evans wave equation, Lagrangian, action, Fermat principle,
Hamilton principle, topological phase effects, Evans spin field, unified
theory, origin of the Planck constant and B(3) in general relativity.
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1. INTRODUCTION

The Evans wave equation of unified theory [1-3] is derived from the
appropriate Lagrangian density and action in general relativity. The
action S so defined is shown to be the origin both of the Planck con-
stant ~ and of the Evans spin field B(3) [4-8]. The latter is always
observed in any physical optical or topological phase effect involving
electromagnetism. The latter, in turn, is part of the Evans unified field
theory [1-3] in general relativity and differential geometry [9,10], and
electromagnetism is the gauge invariant component of unified field the-
ory originating in the torsion form of differential geometry. Gravitation
is the gauge invariant component of the unified field theory originating
in the Riemann form. The potential fields for both gravitation and
electromagnetism originate in the tetrad qa

µ [1-3], which is most gen-
erally defined as the invertible matrix linking two frames of reference.
Section 2 identifies the Lagrangian density and action which lead to the
Evans wave equation through the Euler Lagrange equation. In Sec. 3
the action defined in Sec. 2 is used to construct the phase factor

Φ = exp(iS/~), (1)

which is the origin of all topological phase effects in physics. By defin-
ing the Evans spin field B(3) in terms of the action S it is shown that
the phase factor Φ is also the origin of all physical optical effects [4-8].
Inter alia, the latter are defined by B(3) and serve to show the presence
of B(3) in any physical optical effect, the reason being that B(3) always
defines the electromagnetic phase through S and the Stokes theorem of
differential geometry applied to general relativity. An elegant and pow-
erful understanding of natural philosophy is therefore possible through
the use of differential geometry applied to unified field theory [1-3], and
through the development of electromagnetism as a non-Abelian gauge
field theory [4-8]. Section 4 unifies the Fermat principle of least time
in optics and the Hamilton principle of least action in dynamics by
showing that these principles of classical physics can both be defined
as the tetrad multiplied by the phase factor Φ. The propagation of
a wave in optics or a particle in dynamics is governed essentially by
Φ, and the wave and particle become conceptually unified in general
relativity, thus leading to the de Broglie principle of duality in general
relativity and unified theory, and thus to quantum mechanics in general
relativity.
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2. THE LAGRANGIAN DENSITY AND ACTION OF
THE EVANS WAVE EQUATION

The action S is the integral [9-14] with respect to the four-volume d4x
over the Lagrangian density:

S = (1/c)

∫
Ld4x, (2)

where c is the speed of light in vacuo, a universal constant of general
relativity. The four volume d4x is used because the integration takes
place in a non-Euclidean spacetime of four-dimensions. The Lagrangian
density is defined to be a function of the tetrad qa

µ, the derivative ∂νq
a
µ,

and of xµ:
L = L

(
qa
µ, ∂νq

a
µ, xµ

)
. (3)

It follows [9-14] from Hamilton’s principle of least action and the vari-
ational principle that the Lagrangian density is governed by the Euler
Lagrange equation of motion:

∂L
∂qν

a

= ∂µ

(
∂L

∂(∂µqν
a)

)
. (4)

The Evans wave equation of motion [1-3] is

(� + kT )qa
µ = 0, (5)

where
T = −R/k (6)

is the index contracted energy-momentum tensor defined through
Eq. (6) by the negative of the scalar curvature R divided by k, the
Einstein constant. In Eq. (5) � is the d’Alembertian operator with
respect to Euclidean spacetime [1-3]:

� =
1

c2
∂2

∂t2
− ∂2

∂X2
− ∂2

∂Y 2
− ∂2

∂Z2
. (7)

Equation (5) follows from the Eq. (4) given the Lagrangian density

L = −c
2

k

[
1

2
(∂µq

a
ν)(∂

µqν
a) +

R

2
qa
νq

ν
a

]
= −R

k
c2. (8)

Using Eq. (8), the left-hand side of Eq. (4) becomes

∂L/∂qν
a = −Rc

2

k
qa
ν , (9)
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and the right-hand side is

∂L/ (∂ (∂µqν
a)) = −c

2

k
∂µq

a
ν . (10)

The Euler-Lagrange equations (4) therefore gives the Evans lemma [15]
or subsidiary proposition of differential geometry:

�qa
ν = Rqa

ν , (11)

given the Lagrangian density (8). The Evans wave equation (5) follows
from the lemma (11) using Eq. (6). The Lagrangian density (8) also
defines the scalar curvature in terms of the derivative of the tetrad:

R = ∂µq
a
ν∂

µqν
a . (12)

The Evans wave equation and lemma are derived [1-3] from the tetrad
postulate of differential geometry [9,10]:

Dµq
a
λ = ∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν = 0. (13)

Using Eq. (13) in Eq. (12) defines the scalar curvature R (and thus T )
in terms of the Christoffel connection Γν

µλ and the spin connection ωa
µb

for any spacetime:

R =
(
Γν

µλq
a
ν − ωa

µbq
b
λ

) (
Γµλ

ν qa
ν − ωµb

a q
λ
b

)
. (14)

This definition of the scalar curvature follows from the assumption that
the Lagrangian density is a function of three variables of the type (3).
It shows that for any non-zero T the connections must also be non-zero,
meaning that the spacetime is never Euclidean, and that the spacetime
always contains both curvature and torsion. This is a major advance in
understanding over the original theory of general relativity [15], which
applies only to gravitation, and in which the torsion tensor is set to
zero. For this reason the original theory of general relativity [15] cannot
define electromagnetism.

In Eq. (5) T is the total energy in general. When there is no
potential energy, the total energy and the Lagrangian are identical and
given by the kinetic energy:

T = L = Ekin. (15)

More generally, the Hamiltonian and Lagrangian are defined by

H = Ekin + Epot, (16)

L = Ekin − Epot. (17)
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When considering the Evans lemma and wave equation, the effect of po-
tential energy or interaction energy is always to change R. This means
that Feynman diagrams, for example, could be replaced by a theory
depending on changes of R, a theory which contains no singularities.
This would be a major advance in areas such as quantum electrody-
namics. In general the Evans equation would be solved numerically
for any given problem in physics and general relativity using power-
ful contemporary code and code libraries for the solution of partial,
second-order, differential equations (wave equation).

3. PHASE FACTOR, TOPOLOGICAL EFFECTS, AND
ORIGIN OF THE PLANCK CONSTANT IN GENERAL
RELATIVITY

For a free particle (or field) there is only kinetic energy present and so
total energy T and Lagrangian density originate in kinetic energy. This
means that the Lagrangian density is defined in terms of R(= −kT )
using Eq. (8). The action for a free particle is therefore

S = − c
k

∫
Rd4x. (18)

The action is an integral over the scalar curvature. This result remains
true in the presence of potential or interaction energy provided the
scalar curvature R is changed, and provided the Lagrangian is defined
correctly by Eq. (17). This result may be summarized in the following
theorem:

If the scalar curvature is defined by

T = −R/k, (19)

then ∫
Rd4x = −k

c
S. (20)

The phase factor of the Evans unified field/matter theory can
therefore always be defined by a scalar curvature for any situation in
physics:

Φ = exp(iS/~) = exp

(
−ic
~k

∫
Rd4x

)
. (21)

As shown in Sec. 4, the classical Fermat and Hamilton principles are
defined in turn by Eq. (21), thus providing a powerful basis for the
development of quantum mechanics from general relativity and differ-
ential geometry. The origin of these principles of classical physics is
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found from the fact that the eigenfunction of the Evans wave equation
can always be written as the tetrad

qa
µ(x) = Φqa

µ(0). (22)

Application of the Leibnitz theorem [16] to Eq. (22) shows that

(� + kT )Φ = 0, (23)

and so the phase factor Φ itself gives curvature and energy eigenval-
ues from the wave equation (26). This is the origin of the well ob-
served topological phase effects [17,18] in physics. Examples are the
Aharonov Bohm class of effects, the Berry phase in quantum mechan-
ics, the Sagnac effect in physical optics, the closely related Tomita
Ciao effect [4-8] and in general all physical optical effects, because the
latter all depend on light propagation, and so they all depend on the
phase defined in Eq. (21) through the Fermat principle of least time
[19]. A gauge transformation can also be understood as a phase effect
dependent on Φ, and so Φ is related to the rotation operator in the
gauge transformation of the general n-dimensional field [22]. Therefore
all these effects become understandable as effects of general relativity,
as required by the principle of relativity of Einstein, and not of spe-
cial relativity. The principle of relativity requires that all theories of
physics be theories of general relativity, and ultimately, all topological
phase effects can be traced, through the Evans wave equation, to the
non-trivial topology of spacetime itself. This topology is summarized
in R(= −kT ), and the phase (21) is defined by an integral over R.

The global or gauge-invariant phase factor is defined through
the Dirac or Wu-Yang phase factor [17,18]:

Φa = exp

(
ie

∮
Aa

µdx
µ

)
. (24)

The physical quantity in Wu-Yang-Dirac phase is e multiplied by the
gauge invariant contour integral over the electromagnetic potential Aa

µ.
The latter is related through the Stokes theorem to the surface integral
over the gauge invariant electromagnetic field. The gauge invariant
and non-oscillatory (i.e., phase free) electromagnetic field component
in the Wu-Yang-Dirac phase is the Evans spin field B(3) [4-8]. This
means that the action can be defined through the Stokes theorem and
in general relativity and unified field theory the action is defined in this
way for any radiated or matter field.

The conventional [14] definition of a matter or radiated wave is

ψ = ψ0 exp(iκµx
µ), (25)
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but this definition is incorrect, because it is invariant under parity
inversion

P̂ (xµκ
µ) = xµκ

µ, (26)

and for this reason cannot provide even a qualitative description of or-
dinary effects in physical optics such as reflection (i.e., parity inversion)
and interferometry [8]. If the phase is invariant under reflection there
cannot be an observed reflection. This simple fact appears to have
been overlooked in conventional physical optics. In order to construct
a Michelson interferogram, for example [4-8], the phase must change

sign under P̂ at the point of beam reflection from the mirrors of the
Michelson interferometer, and this property is given by the contour in-
tegral definition of phase used in the Wu-Yang-Dirac phase factor of
electrodynamics:

ψ = ψ0 exp

(
i

∮
κµdx

µ

)
. (27)

This is an important development in physical optics because the Stokes
theorem always relates the contour integral to a surface integral, show-
ing that spin is always present in the phase of a matter wave (such as an
electron beam) or a radiated wave (such as an electromagnetic beam).
In the conventional description of the phase only the energy-momentum
is present, represented by ~κµ. The conventional description is incom-
plete essentially because there are two invariants of the Einstein group,
mass and spin, and both are needed to define a particle such as an
electron or photon. The fundamental spin field in the electromagnetic
phase in general relativity is the B(3) field, which appears in the surface
or area integral of the Stokes theorem. In the notation of differential
geometry [9,10] the latter means that∮

κµdx
µ =

∫
(d ∧ κ)µνdσ

µν (28)

or, in condensed notation, ∮
δS

κ =

∫
S

d ∧ κ, (29)

where d∧ is the exterior derivative. Eq. (29) is true for all geometries
of the base manifold, and so is true in general relativity, which is the
geometrical theory of all physics.

If qa is the tetrad form (a vector valued one form), then the
Stokes theorem implies that∮

δS

qa =

∫
S

τa, (30)
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where
τa = d ∧ qa (31)

is the torsion form [1-3,9,10] as defined by the first Maurer-Cartan
structure relation of differential geometry [9,10]. So the Stokes theorem
relates the contour integral over the tetrad form to the surface integral
over the torsion form for any geometry of the base manifold:∮

qa
µdx

µ =

∫
τa
µνdv

µν . (32)

The torsion form in unified field theory [1-3] is the electromagnetic field
within a factor A(0) with the units of weber m−1 = volts s−1m−1 and
the tetrad form is the electromagnetic potential field [1-3]:

Aa
µ = A(0)qa

µ, (33)

where A(0) is a potential magnitude. Therefore in unified field theory
the Stokes theorem (30) inter-relates the potential and gauge-invariant
fields: ∮

δS

Aa =

∫
S

Ba =

∫
S

d ∧ Aa. (34)

The potential field itself is not gauge invariant, but the contour inte-
gral over the potential field is gauge invariant. In the Aharonov-Bohm
effect [14], gauge transformation of the potential field produces a phys-
ical effect, so both the potential and the gauge invariant fields are
physically meaningful in classical general relativity as well as quan-
tum mechanics. The unified field theory [1-3] has shown that quan-
tum mechanics emerges from differential geometry, (see Sec. 4), so the
gauge transformation of the second kind produces effects such as en-
tanglement, which are conventionally explained in terms of quantum
mechanical wavefunctions without classical meaning. Unified field the-
ory [1-3] therefore traces the origin of entanglement [8] to the gauge
transformation of the second kind. Action at a distance is therefore
not needed to explain entanglement.

The Wu-Yang-Dirac phase developed for general relativity then
follows from Eq. (34):

exp

(
i
e

~

∮
Aa

)
= exp

(
i
e

~

∫
Ba

)
(35)

and completely defines the electromagnetic field because this phase is
gauge invariant for all geometries of the base manifold. In contrast, the
conventional phase factor of Maxwell-Heaviside theory is not gauge-
invariant:

ΦMH = exp [i(ωt− κ · r + α)] , (36)
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so an arbitrary factor α can be added [17] to it without affecting phys-
ical optics. This description of nature is therefore over determined. It
also fails to give a qualitative account of reflection and interferometry
as argued already.

This development suggests that the phase for radiated and mat-
ter waves is defined in general relativity by the tetrad form of differen-
tial geometry:

exp

(
iκ

∮
δS

qa

)
= exp

(
iκ

∫
S

d ∧ qa

)
(37)

for all possible geometries of the base manifold. The index a defines
the tangent space basis, which is orthogonal and normalized, i.e., an
Euclidean space. If we make the gauge transformation of the second
kind [8]:

qa → qa +
1

κ
dχa, (38)

where d denotes the ordinary (not exterior) derivative, then

d ∧ qa → d ∧ qa +
1

κ
d ∧ dχa = d ∧ qa, (39)

on using the Poincaré lemma

d ∧ d := 0. (40)

This result shows that the right-hand side of Eq. (37) is gauge invariant.
Therefore the left-hand side must also be gauge invariant, implying that∮

dχa := 0 (41)

for all geometries of the base manifold. Eq. (41) is true for all χa, ir-
respective of whether χa is single valued or periodic (integral or multi-
valued). Therefore the Aharonov-Bohm effect, for example, cannot
be described by the Stokes theorem (34), and the Aharonov-Bohm ef-
fect cannot be understood with the conventional phase (36), showing
in another way that that phase is unphysical. Recall that the phase
(36) cannot be used to understand reflection or interferometry in phys-
ical optics, and cannot be used to understand interferometry in matter
waves, such as the Sagnac effect in electron beams [8]. The conven-
tional description of the Aharonov-Bohm effect [14] contradicts the
fundamental result (41) from gauge invariance, and the conventional
description is therefore incorrect.
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This fundamental paradox of conventional electromagnetic the-
ory is resolved, however, by developing the Stokes theorem with the
covariant exterior derivative [9,10,18] denoted by D∧:∮

∆S

qa =

∫
S

D ∧ qa, (42)

where
D ∧ qa = d ∧ qa + κqb ∧ qc. (43)

Equation (43) is the non-Abelian Stokes theorem [8,17] in the nota-
tion of differential geometry. The covariant exterior derivative acts on
a differential n form to produce a differential n + 1 form which trans-
forms properly under general coordinate transformation [9,10], i.e., as a
proper tensor. The ordinary exterior derivatives produces a vector val-
ued n+1 form from a vector valued n form. The n+1 form transforms
correctly under the transformation law for (0,2) tensors for general co-
ordinate transformations, but does not transform correctly as a vector
under linear Lorentz transformations [9,10]. This flaw in the d∧ op-
erator is remedied by replacing it by the D∧ operator, the covariant
exterior derivative operator of differential geometry. The latter acts
on the vector valued one form Xa

µ, for example the tetrad, to produce
[9,10] the vector-valued two-form

(D ∧X)a
µν = (d ∧X)a

µν + (ω ∧X)a
µν

= ∂µX
a
ν − ∂νX

a
µ + ωa

µbX
b
ν − ωa

νbX
b
µ,

(44)

where ωa
µb is the spin connection. Recent work [3] has shown that the

spin connection is the Hodge dual of the tetrad, and that the gauge
invariant Riemann form of gravitation is the Hodge dual of the gauge
invariant torsion form of electromagnetism [1-3]. The object D∧Xa al-
ways transforms as a proper tensor [9,10] for all spacetime geometries of
the base manifold, and therefore for all situations in general relativity
and unified field theory. The unified field theory [1-3] traces the ori-
gin of both gravitation and electromagnetism to differential geometry,
thus implying the use of D∧ for basic mathematical correctness. The
replacement of d∧ by D∧ produces the B(3) field [1-8,17], produces the
correct explanation of reflection and interferometry through the phase
constructed from (42), and clearly explains the Aharonov-Bohm effect
as follows.

The electromagnetic potential field in the unified field theory is
defined as the tetrad [1-3]

Aa
µ = A(0)qa

µ, (45)
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where A(0) is the scalar magnitude of the fundamental, C negative,
potential field, whose origin can be traced to primordial magnetic flux
in units of volts s−1 [1-3]. So, in generally covariant electrodynamics
[4-8],

D ∧ Aa = d ∧ Aa + gAb ∧ Ac, (46)

with
g = e/~ = κ/A(0) (47)

as the fundamental charge e on the proton divided by the Planck con-
stant ~. Thus g is a universal constant [4-8] that defines the photon
momentum by

p = ~κ = eA(0), (48)

and the origin of g can be traced to differential geometry, the need for a
D∧ operator instead of a d∧ operator as argued already. Thus, general
relativity and unified field theory show the need for g in electrody-
namics. In conventional Maxwell-Heaviside theory (a theory of special
relativity) g is missing, essentially because spacetime in the Maxwell
Heaviside theory is flat or Euclidean and the spin connection and R are
both zero. In general relativity this implies that the universe is devoid
of all matter fields, all radiation fields and all energy-momentum (T is
zero for all k if R is zero). General relativity and differential geometry
imply the B(3) field, defined as the differential form

B(3) = −igA(1) ∧ A(2). (49)

(If g were zero (flat spacetime) B(3) would be zero, but as just argued,
B(3) is responsible for all physical optics.) The correctly covariant
definition of the Wu-Yang phase in general relativity is therefore

Φ = exp

(
ig

∮
DS

Aa

)
= exp

(
ig

∫
S

Ba

)
= exp

(
ig

∫
S

D ∧ Aa

)
.

(50)
In order to understand the Aharonov-Bohm class of effects, consider
the property of the covariant Stokes theorem∮

DS

A =

∫
S

D ∧ A, (51)

under the local gauge transformation

A′ = σA, (52)

where σ is rotation operator [9]. In Eqs. (51) and (52) we have used
the generic notation of differential geometry. Covariant differentiation
of the gauge transform relation (52) produces

D′A′ = σDA, (53)
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where
D = d+ gA, (54)

D′ = d+ gA′, (55)

while ordinary differentiation leads to

dA′ = d(σA) = σdA+ Adσ. (56)

From Eqs. (54) and (55) inserted in (53),

dA′ + gA′A′ = σdA+ gσAA. (57)

Using Eq. (56) in (57),

σdA+ Adσ+gA′A′ = σdA+ gσAA,

Adσ+gA′A′ = gσAA,
(58)

and, using Eq. (52) in (58),

Adσ + gA′σA = gσAA, (59)

A′ = σAσ−1 − 1

g
dσσ−1. (60)

This equation defines the change in the tetrad form Aa
µ (the electro-

magnetic potential form) under the local gauge transformation (52),
also known as the gauge transform of the second kind [8,9]. This is the
relativistically correct gauge transform and is the basis for all gauge
field theory in physics because it leaves the action invariant, and leads
to fundamental conservation theorems such as the Noether theorem.

In conventional electromagnetic theory [9] the electromagnetic
field is defined by the ordinary exterior derivative acting on the scalar-
valued one-form A:

F = d ∧ A, (61)

and the field is invariant under the gauge transform (6):

F ′ = d ∧ A′ = d ∧ A− (1/gσ)d ∧ dσ = d ∧ A. (62)

It follows from the Stokes theorem of conventional electromagnetic the-
ory, ∮

δS

A =

∫
S

d ∧ A, (63)
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that there is no Aharonov-Bohm effect in conventional electromagnetic
theory. The reason is that the right-hand side of Eq. (63) is unchanged
(i.e., invariant) under the gauge transform (60), so∮

δS

dσ =

∫
S

d ∧ dσ := 0 (64)

for all σ, irrespective of whether σ is a single-valued or periodic (multi-
valued) function. The conventional explanation of the Aharonov-Bohm
effect [9] incorrectly [8] asserts however that∮

δS

dσ 6= 0(?). (65)

The correctly and generally covariant electromagnetic field [1-3]
transforms as

G′ = D′ ∧ A′ = d ∧ A′ + gA′ ∧ A′ (66)

under the frame rotation induced by σ as described in Eq. (52). Using
the result

d ∧ A = d ∧ A′, (67)

it is seen that the rotation produces the effect

A ∧ A→ A′ ∧ A′, (68)

which means that the magnetic field defined in Eq. (49) transforms
under local gauge transformation, i.e., the rotation (52), as

B = −igA ∧ A→ −igA′ ∧ A′. (69)

This transformation is the origin of the Aharonov-Bohm effect,
which is therefore due to general relativity, not special relativity as in
the (incorrect) conventional theory.

The definition (69) of the magnetic field in terms of the cross
product of two potentials was first inferred [4-8] for the radiated Evans-
Vigier field B(3) (now known to be the fundamental spin Casimir in-
variant of the Einstein group in electrodynamics), but the definition
has been extended [4-8] to a static (non-radiated) magnetic field be-
cause the correctly and generally covariant definition of the electric and
magnetic fields must always be

G = D ∧ A, (70)

in which d∧ has been replaced by D∧. As argued already, this replace-
ment is a fundamental requisite of differential geometry. The exterior
derivative of the potential (d ∧ A) as in conventional electromagnetic
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theory (special relativity) is replaced by the covariant exterior deriva-
tive of the tetrad (D∧A) in general relativity. In the Aharonov-Bohm
effect, regions of the experimental set up are considered where the orig-
inal magnetic flux density and original potential are both zero. In these
regions an electromagnetic effect is nevertheless observed, for example
as a shift in an electron diffraction pattern. The Aharonov-Bohm effect
originates in the magnetic flux

B′ = −ig
(

1

g2σ2
dσ ∧ dσ

)
, (71)

which is purely geometrical or topological in nature and which does not
depend on the original potential A. The magnetic flux that is observed
in the effect is

φ =

∫
B′dAr, (72)

and so the original magnetic flux density has been shifted by the local
gauge transform (52) into other regions of spacetime. This effect is
due to the structure of spacetime itself, and therefore due to general
relativity. It is obviously not due to action at a distance, a concept
which violates relativity and therefore violates the Noether theorem,
which as argued already is derived from relativity through local gauge
transformation. Anything that violates the Noether theorem violates
conservation of energy, momentum, charge and current. The gauge
transform (52) is defined by the complex-valued rotation operator

σ = exp (iΛa(xµ)Ma) , (73)

and so
|A′ ∧ A′| = |A ∧ A|, (74)

by the property of complex conjugation.
It is worth emphasizing that the basic error in the conventional

theory of the Aharonov-Bohm effect [9] can be understood clearly in
the notation of differential geometry as follows:

A→ A+
1

g
dχ,∮

δS

dχ=

∫
S

d ∧ dχ := 0.
(75)

However, it is incorrectly asserted in the original theory [9] that∮
δS

dχ 6= 0(?). (76)
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This mathematical error was first pointed out in Ref. [8] and is now
easily understood using differential geometry as argued already.

A generally covariant theory of electrodynamics is therefore
needed to correctly explain the Aharonov-Bohm effect in terms ofD∧A.
In the correctly covariant Stokes theorem (51), gauge transformation
(52) produces the result∮

DS

dσ =
i

σ

∫
S

dσ ∧ dσ 6= 0 (77)

in regions where the original magnetic flux density and potential are
both zero. There is therefore an electromagnetic effect in these regions
as observed. The unified field theory [1-3] means that there must be a
gravitational analogy of the Aharonov-Bohm effect, and such an effect
is indeed observed – the well-known Coriolis and centripetal accelera-
tion due to a rotating frame of reference. The rotation of the frame is
a local, or relativistically correct, gauge transformation of type two ob-
served in the weak field limit. These accelerations are observed where
there is no Newtonian (or central or linearly directed) acceleration, and
therefore no Newtonian gravity and no Newtonian force. It is never-
theless clear that the centripetal and Coriolis accelerations are physical
accelerations that exist in regions where there is no Newtonian accel-
eration, and which are generated by a gauge or frame transformation
in the weak field limit of general relativity. They therefore meet all the
requirements of an Aharonov-Bohm effect.

The fundamental geometrical reason for the Aharonov-Bohm
effect is that the Stokes theorem must be generally covariant, as in
Eq. (51). Such a Stokes theorem is mathematically non-Abelian [8],
and has properties in general relativity and unified field theory that
are not present in special relativity. One of these is the Aharonov-
Bohm effect as just argued, others include the topological phase effects,
the Sagnac effect, and indeed all physical optics, because the phase in
electrodynamics can only be explained correctly with the non-Abelian
or generally covariant Stokes theorem [8] (Eq. (50)). The latter can
always be written as∮

DS

Aa =

∫
S

d ∧ Aa + g

∫
S

Ab ∧ Ac. (78)

If a = (1), (2), (3), the labels of the complex circular basis of circularly
polarized electromagnetic radiation [4-8], then∮

DS

A(i) =

∫
S

d ∧ A(i), i = 1, 2, (79)

for the transverse components (1) and (2), and∮
DS

A(3) = −ig
∫

S

A(1) ∧ A(2) =

∫
S

B(3) (80)
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for the longitudinal component (3). In the conventional theory of elec-
tromagnetism the transverse components are radiated plane waves and
the longitudinal component is missing. The fundamental reason for
this is that the conventional theory is an incorrectly Abelian gauge
field theory in which the phase is incorrectly defined. In the generally
covariant theory of electrodynamics [1-3] however, the (3) component
of gauge transformation from a region 1 to a region 2 can always be
written (From Eq. (80) [4-8]) as

A
(3)
1 → A

(3)′

2 . (81)

Under this gauge transformation the magnetic flux density is invariant,
but is shifted from region 1 to region 2, so the effect can be traced to
a property of spacetime itself in general relativity. In special relativ-
ity, the spacetime is flat or Euclidean, and the Aharonov-Bohm effect
cannot be explained with flat spacetime. Similarly the action

S = e

∮
DS

A
(3)
1 → e

∮
DS

A
(3)′

2 (82)

is invariant under the longitudinal, local gauge transform (52) but the
action is shifted from region 1 to region 2. This shift in the action
is accompanied by a shift in the generally covariant electromagnetic
phase factor

Φ = exp(iS/~). (83)

The local gauge transformation responsible for this shift in the
phase factor is a frame rotation defined by the rotation operator in
Eq. (73). In the Sagnac effect, a corresponding shift in phase factor
is brought about by a physical rotation of the platform of the Sagnac
interferometer [8] and the Sagnac effect can be understood [8] as a phase
shift brought about by an increase or decrease in the wave number
(κ = ω/c) which is related to the longitudinal potential component in
the phase factor (50) by

κa = gAa. (84)

Therefore the shift (82) can be understood in the Sagnac effect as a
frequency shift

ω → ω ± Ω. (85)

In Eq. (85) Ω is the angular frequency of the rotating platform and the
plus or minus signs originate from clockwise and anticlockwise platform
rotation respectively. In the Aharonov-Bohm effect the area Ar in the
surface integral on the right-hand side of Eq. (50) is defined by the area
enclosed by diffracting beams in a Young or two-slit interferometer. In
the Sagnac effect the corresponding area is defined by the area enclosed
by the Sagnac interferometer, i.e., by the paths of the electromagnetic
beams or matter beams such as an electron beam or molecular beam
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on the platform, either at rest or rotating at angular frequency, Ω. The
Sagnac effect is explained as follows from the generally covariant phase
factor (50).

The magnitude of Ba is defined by [4-8]

B(0) = κA(0). (86)

The phase factor (50) therefore becomes

Φ = exp

(
i
e

~

∮
A(0) · dr

)
= exp

(
i
e

~
κA(0)

∫
dAr

)
(87)

and can be written as

Φ = exp

(
i

∮
κ(3) · dr

)
= exp(iκ2Ar). (88)

The Sagnac effect with platform at rest is given by the area integral
on the right-hand side, which is equal to the contour integral around
the boundary of this area on the left-hand side. If the area is a circle
the boundary is the circumference. The interferogram or diffraction
pattern of the Sagnac effect with platform at rest is therefore

Re(Φ) = cos(κ2Ar) = cos(ω2/c2Ar) (89)

as observed experimentally to one part in 1023 precision [8]. The Sagnac
effect from Eq. (89) depends on the magnitude of the area enclosed by
the boundary, but not to the shape of the boundary, and this is again
as observed experimentally. Thirdly, the Sagnac effect with platform
at rest originates in the generally invariant phase factor

Re(Φ) = cos
(
ω2/c2Ar

)
(90)

(a scalar frequency squared divided by c2 and multiplied by a scalar
magnitude of area), and so the Sagnac effect with platform at rest is
the same for an observer on and off the platform, again as observed
experimentally [8]. Similarly the contour integral on the left-hand side
of Eq. (88) is the same to an observer on and off the platform. The
Sagnac effect with platform in motion is given by the interferogram

Re(Φm) = cos

((
(ω + Ω)2 − (ω − Ω)2

) Ar
c2

)
= cos

(
4
ωΩ

c2
Ar

)
, (91)

as observed experimentally to one part in 1023.
In conventional electrodynamics (Maxwell-Heaviside theory)

there is no Sagnac effect [8], because that theory is invariant under
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motion reversal T , and is also metric invariant, i.e., a theory of flat
spacetime. In generally covariant electrodynamics [1-4] the Sagnac ef-
fect is described by the generally covariant phase factor (50), which is
also the origin of the Wu-Yang phase factor. The Sagnac effect can
only be described if it is recognised that the torsion form in gravita-
tional theory is the origin of the Coriolis and centripetal accelerations,
and may be the origin of dark matter in the universe.

The electromagnetic phase in general relativity and unified field
theory is therefore

Φ = exp

(
i
e

~

∮
A(3)dZ

)
= exp

(
i
e

~

∫
B(3)dAr

)
, (92)

and the following equations define the magnitudes B(0) and A(0), re-
spectively, in terms of R and κ:

eB(0) = ~R, (93)

eA(0) = ~κ, (94)

B(3) =
~
e
R. (95)

Similarly the mass is defined by

m = −
∫
R

κ
dV. (96)

These equations show that mass m is the first (mass) Casimir in-
variant of the Einstein group, and the B(3) field is the second (spin)
Casimir invariant of the Einstein group within the scalar magnitude
B(0). The corresponding conclusions hold in special relativity if the
Einstein group is replaced by the Poincaré group, as first demonstrated
by Wigner [8].

The B(3) or Evans-Vigier field originates therefore in the funda-
mental spin invariant of general relativity, mass being the other funda-
mental invariant.

The magnitude of the photon momentum is defined by

ρ = ~κ = eA(0), (97)

and so e is a primordial charge (with the magnitude of the charge on
the proton) present within the radiated electromagnetic field. So the
photon is both a particle and a field. The g of non-Abelian gauge
field theory [4-8] applied to the electromagnetic field is e/~. With
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these definitions, the electromagnetic phase factor in general relativity
is therefore

Φ = exp(iS/~) = exp

(
i

∫
Ld4x

)
= exp

(
− i

k

∫
Rd4x

)
= exp

(
iκ

∮
dZ

)
= exp

(
iκ2

∫
dAr

)
,

R= κ2.

(98)

The Planck constant is the least amount of action or angular
momentum present in the universe, and so is defined in terms of scalar
curvature by

~ = −c
r

∫
R0d

4x. (99)

The local gauge transformation (52) is the generation of one tetrad,
A′a

µ , from another, Aa
µ,

A′a
µ = σAa

µ (100)

and is therefore a form of the Fermat principle of least time or Hamilton
principle of least action combined into one equation (100) of unified
field theory expressed by differential geometry. In Eq. (100) the action
S is automatically invariant under the gauge transform because the
latter is defined in terms of rotation generators of a given gauge group,
so we obtain an equation of general relativity defining the invariant
action in terms of the rotation generator

S = ~MaΛa (101)

for any given gauge group and any given representation space of the
base manifold and for any geometry of the base manifold.

It is well known [19] that Fermat’s principle of least time gov-
erns all physical optics, so it must also govern the Aharonov-Bohm
and Sagnac effects, as just shown. Using Eq. (98) the Sagnac effect
for example can now be understood in general relativity and unified
field theory [1-3] as a change in scalar curvature of spacetime produced
by rotating the platform in the Sagnac experiment. The Sagnac effect
observed [8] in electron beams can be understood in the same way; it
is fundamentally a change in phase produced by the scalar curvature
of spacetime, and can be observed both in matter waves (electrons or
molecules for example) and radiated waves (visible frequency light for
example). The Sagnac effect observed in radiated and matter fields is
therefore proof of the fundamental relations (98), and shows that all
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physical optical effects of the electromagnetic field are produced by the
fundamental B(3) field [8]. In matter waves the B(3) field becomes the
fundamental spin of the particle making up the matter field (for exam-
ple the electron). The Sagnac effect therefore constitutes proof of the
Evans unified field theory, in which particle spin from the Dirac equa-
tion is deduced from the Evans wave equation [1-3]. The latter applies
to both radiated and matter fields. The Sagnac effect in matter fields is
also an experimental demonstration of quantum mechanics, and unifies
the Fermat and Hamilton principles through Eq. (22), producing the
de Broglie wave particle duality. In the closely related Tomita-Chao
effect [8] an increment of the phase (98) or (92) is detected after an
electromagnetic beam propagates through several loops of a helix using
an optical fiber. In the Berry effects [14] a similar type of geometrically
generated phase (98) is detected after an electromagnetic beam prop-
agates through several loops of a helix using an optical fiber. In both
experiments the phase increment is described by a contour integral, so
is additive if the light propagates through several loops. The Bohm-
Aharonov effect is detected with a two-aperture interferometer and is
described by the same equation (98) as the Sagnac effect. The only
difference between the two effects is geometry and the way in which an
observable phase shift is induced: the former by a frame rotation, the
latter by a physical rotation. In a physical optical effect such as re-
flection or in an interferometric effect such as Michelson interferometry
[8], the effect being observed is described in the same way, mathemati-
cally, as in the Sagnac and Aharonov-Bohm effects. All these effects [8]
are manifestations of Eq. (98), in which the phase factor and action are
defined with the Stokes theorem, and manifestation of the Fermat prin-
ciple of least time, Eq. (22). The existence of Michelson interferometry
(and all types of interferometry) depends [8] on the following property
of the contour integral within the exponent of the phase factor:∮

0A

A · dr = −
∮

A0

A · dr. (102)

In an electromagnetic wave propagating along the Z axis, this
contour integral is valued along the following closed boundaries defining
an area. If the distance 0A is n times the wavelength λ, then the area
enclosed [8] is nλ2/π. The change in phase on normal reflection is then
[8]

exp

(
i

∮
κdZ

)
= exp

(
i

∫ Z

0

κdZ − i

∫ 0

Z

κdZ

)
= exp(2iκZ), (103)

and this is observed in the interferogram of a device such as a
Michelson interferometer, Young (two-slit) interferometer, Sagnac, or
Mach/Zehnder interferometer.
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It is not possible to describe interferometry in the Maxwell-
Heaviside theory because the phase factor in that theory is

exp (i(κ · r− ωt))
P̂→ exp (i(κ · r− ωt)) . (104)

Normal reflection is parity inversion, and under the parity inversion
operator P̂ :

κ → −κ, r → −r, (105)

so the phase (104) does not change under normal reflection in Maxwell-
Heaviside theory, implying that there is no observable interferogram,
contrary to experiment. The effect of parity inversion on the phase
(103) however, is as follows:

P̂

(∮
κdZ

)
= P̂

(∫ Z

0

κdZ −
∫ 0

Z

κdZ

)
=

∫ −Z

0

κdZ −
∫ 0

−Z

κdZ = −
∮
κdZ,

(106)

and the interferogram is predicted and observed experimentally. This
is experimental evidence in favor of electrodynamics as a unified field
theory in general relativity, in which the B(3), Evans spin, field is well
defined as the following wedge product of tetrads:

B(3)
µν = −ig

(
A(1) ∧ A(2)

)
µν
. (107)

The phase factor in physical optics follows from the Wu-Yang-
Dirac phase as the surface integral over the commutator of covariant
derivatives [8]:

Φ = exp

(∫
[Dµ, Dν ] dσ

µν

)
. (108)

Only the B(3) field

Φ = exp

(
∓g

2

2

∫ (
A

(1)
Z A

(2)
Y − A

(2)
X A

(1)
Y

)
dSXY

)
(109)

contributes to the phase factor in optics and interferometry because
the other terms are either zero or oscillatory, averaging to zero over
many cycles [8]. The expression of this result in differential geometry
is ∮

DS

qa =

∫
S

qb ∧ qc = κ

∫
S

D ∧ qa. (110)
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4. UNIFCATION OF THE FERMAT AND HAMILTON
PRINCIPLES IN THE PRINCIPLE OF LEAST
CURVATURE, DERIVATION OF WAVE PARTICLE
DUALITY AND QUANTUM MECHANICS FROM
GENERAL RELATIVITY

It has been argued that in general relativity the least action in the
universe is the Planck constant, a universal constant and the archetyp-
ical signature of quantum mechanics. This inference suggests that the
well known Fermat principle of least time, which governs optics, and
the Hamilton principle of least action, which governs dynamics, can be
derived from one principle, to which we refer as the Principle of Least
Curvature. The Principle asserts that scalar curvature R is minimized
in the equations of motion which govern natural philosophy.

A mathematical expression of the principle is the equation

qa
µ(xµ) = eiS(xµ)/~qa

µ(0), (111)

which is the equation of motion of the tetrad in general relativity in
terms of the spacetime dependent action S(xµ). The Evans wave equa-
tion [1-3] is obtained from Eq. (111) by applying the operator � to
both sides to give

�qa
µ(xµ) = �

(
eiS(xµ)/~qa

µ(0)
)

= ReiS(xµ)/~qa
µ(0). (112)

Using Eq. (111), we find the Evans lemma and wave equation [1-3],

�qa
µ(xµ) = Rqa

µ(xµ) = −kT
(
qa
µ(xµ)

)
(113)

and identify the scalar curvature as

R = �
(
eiS(xµ)/~) . (114)

The least possible curvature associated with any particle is

|R0| = 1/λ2
0, (115)

where λ0 is its Compton wavelength

λ0 = ~/mc. (116)

The principle of least curvature means that a particle never travels in
a precise straight line, because the scalar curvature of a straight line is
zero. The least curvature of the particle is defined by the least action ~
in Eq. (99). This inference means that a particle always has a wave-like
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nature (observed in diffraction and interferometry of matter waves, for
example), and so we have derived the de Broglie wave-particle duality
from general relativity. The principle of least curvature also means
that the phase in optics and dynamics (radiated and matter waves
respectively) is an always defined by a Stokes theorem as in Eq. (103)
for example, because the phase itself must also have a rotational as
well as a translational nature. As we have argued, this inference leads
to the first correct explanation of physical optics.

The Evans wave equation is therefore the fundamental equa-
tion of quantum mechanics, and is derived from the principle of least
curvature in general relativity.

Under local gauge transformation the action is invariant, and so
R is invariant. This means that the Aharonov-Bohm effect is a shift
from one region of spacetime with a given curvature R to another re-
gion of spacetime with the same curvature R. This shift is not action
at a distance, but could be interpreted as “non-locality” in the sense
that one (local) region of spacetime has the same curvature as another
region. This is also a possible explanation of entanglement in quantum
mechanics. Therefore both entanglement and non-locality are recon-
ciled with the local nature of general relativity. No such reconciliation
is possible in special relativity, where there is no concept of R, and
where there is no principle of least curvature. This means that gen-
eral relativity is a general theory of natural philosophy. All theories
of physics are theories of general relativity. The Dirac equation, for
example, is

qa
µR(xµ) = exp(iS/~)qa

µL(0),

↓ P̂

qa
µL(xµ) = exp(iS∗/~)qa

µR(0),

(117)

and the time-dependent Schrödinger equation is obtained from

qa
µ(t, r) = eiS/~qa

µ(0,0) (118)

by the following differentiation:

∂qa
µ/∂t = (i/~)Hqa

µ. (119)

The Hamiltonian is defined [19] by

H = −∂S/∂~. (120)

Finally, the Heisenberg commutator equation is a cyclic relation be-
tween tetrad forms in differential geometry:

qc
µν = (qa ∧ qb)µν . (121)
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Defining the angular momentum as the tetrad form

Ja
µ = J (0)qa

µ, (122)

the Heisenberg commutator relation for angular momentum is ob-
tained:

Ja ∧ J b = ~J c, (123)

the starting point for molecular quantum mechanics [19].
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