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Abstract

The field equations of Einstein Cartan Evans (ECE) are used to develop the
concept of the static electric field as a vector boson with spin indices −1, 0, +1,
which occur in addition to the vector character of the electric field. The existence
of the electric vector boson in physics is inferred directly from Cartan geometry,
using the concept of a spinning space-time that defines the electromagnetic field.
When the electromagnetic field is independent of the gravitational field the spin
connection is dual to the tetrad, producing a set of equations with which to
define the electric vector boson. Angular momentum theory is used to develop
the basic concept.

Keywords: Einstein Cartan Evans (ECE) field theory, generally covariant uni-
fied field theory, electric vector boson, spinning space-time, spin connection,
tetrad, angular momentum theory.

12.1 Introduction

Recently, the concept of electromagnetic field as spinning space-time in general
relativity has been developed using standard Cartan geometry [1]– [20]. This
produces a generally covariant unified field theory in which the electromagnetic
field is the well known Cartan torsion within a factor A(0), where cA(0) has
the units of volts. The theory is known as Einstein Cartan Evans (ECE) field
theory because it is based on the work of Einstein and Cartan. The ECE theory
has been tested extensively for technical correctness and also against a range
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12.2. SCALAR POTENTIAL AND ELECTRIC FIELD

of experimental data. It has therefore been accepted [21] as a valid theory of
physics.

In Section 12.2, the duality equations between spin connection and tetrad
are developed in a set of six equations, which are valid when the electromagnetic
field is independent of the gravitational field. The basic ECE Ansatz [1]– [19]
is used to define the scalar potential and from this the electric field is defined
in terms of the scalar potential and the spin connection. It is shown that in
ECE theory, the static electric field develops a vector boson character. In Section
12.3, angular momentum theory is used to develop the concept of electric vector
boson and the complex circular basis [1]– [19] introduced for the internal indices
of the electric vector boson.

12.2 Scalar potential and electric field

In the absence of gravitation the spin connection and tetrad forms [1]– [20] are
dual in the tangent space-time, so:

ωa
µb = −κ

2
εabcq

c
µ (12.1)

Here ωa
µb is the spin connection form of Cartan geometry, κ has the units of

wave-number, ηa
bc is the Levi-Civita tensor in the tangent space-time, and qc

µ is
the tetrad form of Cartan geometry. Eq.(12.1) may be expanded in six equations
as follows:

ω0
µ1 = −κ

2
(q2µ + q3µ) (12.2)

ω0
µ2 = −κ

2
(q3µ + q1µ) (12.3)

ω0
µ3 = −κ

2
(−q1µ − q2µ) (12.4)

ω1
µ2 =

κ

2
(q0µ + q3µ) (12.5)

ω1
µ3 = −κ

2
(−q2µ + q0µ) (12.6)

ω2
µ3 = −κ

2
(q1µ + q0µ) (12.7)

The basic ECE Ansatz is:
Aa

µ = A(0)qa
µ (12.8)

where Aa
µ is the electromagnetic potential form. The scalar potential may be

defined in two ways:
Aa

µ → (Aa
0 ,0)or(A0

µ,0) (12.9)

However, these two definitions are equivalent as shown as follows.
Use the fundamental definitions:

Ua = qa
0U

0 (12.10)

U0 = q0µU
µ (12.11)

and assume that:
U0U0 = 1 (12.12)
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for simplicity of argument. Multiply both sides of Eqs.(12.10) and (12.11) by
U0 to obtain:

UaU0 = qa
0 (12.13)

and
q0µU

µU0 = 1 (12.14)

The fundamental normalization property of the tetrad [20] is:

qa
µq

µ
a = 1 (12.15)

so
q0µq

µ
0 = 1 (12.16)

and:
qa
0q

0
a = 1 (12.17)

Using Eqs.(12.13), (12.14) and (12.17):

q0aU
a = q0µU

µ (12.18)

The a and µ indices are therefore equivalent and interchangeable if one index
of the tetrad is fixed at zero. Therefore the scalar potential is either:

Aa
0 = A(0)qa

0 (12.19)

or:
A0

µ = A(0)q0µ (12.20)

where
φ(0) = cA(0) (12.21)

The scalar component is φ(0), but qa
0 and q0µ are mixed index rank two tensors.

The equivalence of (12.19) and (12.20) means that one frame spinning with
respect to a second is indistinguishable from a second spinning with respect to
the first.

In special relativity (Maxwell Heaviside field theory) the index a is missing
and the scalar potential is the time-like part of Aµ:

Aµ =
(
φ

c
,0
)

(12.22)

In general relativity (ECE theory):

Aa
µ =

(
φa

0

c
,0
)

(12.23)

where Aa
0 has the four components A0

0, A
1
0, A

2
0, and A3

0. Each of these four
components is a generally covariant quantity. In special relativity there is only
one quantity (12.21). That quantity is not generally covariant, it is Lorentz
covariant. From the basic ECE Ansatz (12.8):

A0
0 = A(0)q00 , · · · , A3

0 = A(0)q30 (12.24)

whereA(0) is frame invariant and a scalar. The four tetrad elements in Eq.(12.24)
are generally covariant, i.e. the tetrad qa

0 retains its tensorial character under
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12.2. SCALAR POTENTIAL AND ELECTRIC FIELD

any type of coordinate transformation. This property represents objectivity in
science. All four elements A0

0, A
1
0, A

2
0, A

3
0 exist in general and are not the same

in general. Thus ECE theory contains more information than Maxwell Heavi-
side (MH) theory and is ECE theory is rigorously objective. In general, all four
Aa

0 (a = 0, ..., 3) may be observed experimentally. At present, nothing is known
about them experimentally, the only thing that is known is the Coulomb Law’s
potential:

φ = − e

4πε0r
ε0 (12.25)

in spherical polar coordinates. Here η0 is the vacuum permittivity, −e is the
charge on the electron, and r is the radial coordinate. In special relativity, φ is
the time-like part of Aµ in electro-statics. As such φ is Lorentz covariant, part
of the Lorentz covariant Aµ. In MH theory the electric field is well known to be
represented by:

E = −∇φ− ∂A

∂t
(12.26)

where

Aµ =
(
φ

c
,−A

)
(12.27)

In MH the electric field is therefore a 3-D vector and part of the 4-D electro-
magnetic tensor Fµν . In electro-statics [22]:

∂A

∂t
= 0 (12.28)

so:
E = −∇φ =

e

4πε0r2
er (12.29)

where er is the radial unit vector of the spherical polar coordinate system.
In ECE theory the electric field is obtained from the first Cartan structure
equation:

T a = d ∧ qa + ωa
b ∧ qb (12.30)

This is transformed into:

F a = d ∧Aa + ωa
b ∧Ab (12.31)

by the ECE Ansatz:
Aa = A(0)qa (12.32)

F a = A(0)T a (12.33)

Here F a is the electromagnetic field form and T a is the Cartan torsion form.
These are vector valued two-forms carrying an index a. It is this index that
gives the electric field its vector boson character. From Eq.(12.31) [1]– [19]:

Ea = −∇φa − ∂Aa

∂t
− cω0a

bA
b + ωa

bφ
b (12.34)

and it is seen that the electric field is a vector with a = 0, . . . , 3 and can be
considered in general as four vectors, E0, E1, E2 and E3. This is the correctly
objective description of the electric field, but again, almost nothing is known
experimentally about. In special relativity the entity known as the static electric
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field is the 3-D vector E, which is Lorentz covariant. This has no internal label
a.

In special relativity the work done on a charge against the action of a static
electric field is:

W = e(φA − φB) (12.35)

in transporting a charge from A to B. In general relativity the amount of work
done depends on the index a:

W a
0 = e(φa

0A − φa
0B) (12.36)

and this reflects the structure of ECE space-time. The Minkowski space-time
of MH theory has no structure. However, the work may still be expressed in
ECE theory as the difference of two potentials. Electro-statics may therefore be
developed in general relativity using the potential. It may be assumed that:

Aa = 0 (12.37)

and therefore the electric field is defined as:

Ea = −∇φa + ωa
bφ

b (12.38)

From this point onwards it is necessary to rely on the only information available
experimentally about φ, and this is the Coulomb Law, Eq.(12.25). Although
this is known to be very accurate [22], it is objectively only a special case of
general relativity. In Eq.(12.25), φ is the time-like component of Aµ, which is
Lorentz covariant. Objectivity demands that there must be φa

0(a = 0, ..., 3)µ

in physics. In the absence of any experimental data on φa
0 it is assumed for

simplicity of argument only that:

φ := φ0
0 = φ1

0 = φ2
0 = φ3

0 (12.39)

Thus:
φ = φ(0)q00 (12.40)

where
q00 = φ1

0 = φ2
0 = φ3

0 (12.41)

has been assumed for simplicity. From units analysis:

q00 = 1 (12.42)

Note carefully however that q00 takes this value only in a given frame. In any
other frame it is still unit-less but may become different from unity in general.
This is the result of general covariance in physics, the basic ansatz of general
relativity. The spin connection elements responsible for the scalar potential in
ECE may now be defined in terms of q00 using Eqs.(12.2)–(12.7), as follows:

ω1
02 = −ω2

01 = ω1
03 = −ω3

01 = ω2
03 = −ω3

02 =
κ

2
q00 (12.43)

There is only one independent element, and its value is κ/2. This greatly sim-
plifies the treatment of the scalar potential in terms of the spin connection.
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12.2. SCALAR POTENTIAL AND ELECTRIC FIELD

This treatment relies on the Coulomb potential as the only experimentally de-
termined scalar potential to date for the static electric field. In general, the
latter is defined from Eq.(12.38) as:

Ea = −∇φa + ωa
0φ

0 + · · ·+ ωa
3φ

3 (12.44)

Ea
1 = −∂φ

a

∂x1
+ ωa

10φ
0 + · · ·+ ωa

13φ
3 (12.45)

and so on. From Eq.(12.1), it is seen that the spin connection elements that
contribute to Eq.(12.45) are of the type:

µ = 1, 2, 3 (12.46)

Furthermore, only tetrad elements of the type q0µ may contribute in Eqs.(12.2)–
(12.7). These are defined, as we have seen at the start of this Section, by:

qµ
0 q

0
µ = 1 (12.47)

and
U0 = q0µU

µ (12.48)

The tetrad elements of type q0µ in Eqs.(12.2)–(12.7), with µ = 1, 2, 3, define:

ω1
µ2 = ω1

µ3 = ω2
µ3 =

κ

2
q0µ (12.49)

with:
ω2

µ3 = −ω1
µ2

etc.
(12.50)

This means that in Eq.(12.45):

a = 1, 2, 3 (12.51)

and the electric field takes on a vector boson character in general relativity.
Thus:

E1 = −∇φ+ ω1φ (12.52)

E2 = −∇φ+ ω2φ (12.53)

E3 = −∇φ+ ω3φ (12.54)

where the three vector boson spin connections are defined by:

ω1
1 = ω1

10 + ω1
11 + ω1

12 + ω1
13 (12.55)

ω1
2 = ω1

20 + ω1
21 + ω1

22 + ω1
23 (12.56)

ω1
3 = ω1

30 + ω1
31 + ω1

32 + ω1
33 (12.57)

ω1 = ω1
1i + ω1

2j + ω1
3k (12.58)

and so on for ω2 and ω2. From Eq.(12.49):

ω1
1 = ω1

12 + ω1
13 = κq01 = κ (12.59)

ω1
2 = ω1

21 + ω1
23 = κq02 = κ (12.60)
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ω1
3 = ω1

32 + ω1
33 = κ (12.61)

ω2
1 = ω2

2 = ω2
3 = 0 (12.62)

and:

E1
1 = − ∂φ

∂x1
+ (ω1

10 + ω1
11 + ω1

12 + ω1
13)φ = − ∂φ

∂x1
+ κφ

etc
(12.63)

Thus:
E1 = −∇φ+ κφ (12.64)

Similarly:

E2
1 = − ∂φ

∂x2
+ (ω2

10 + ω2
11 + ω2

12 + ω2
13)φ = − ∂φ

∂x2
(12.65)

E2 = −∇φ (12.66)

and:

E3
1 = − ∂φ

∂x3
+ (ω3

10 + ω3
11 + ω3

12 + ω3
13)φ = − ∂φ

∂x3
− κφ (12.67)

E3 = −∇φ− κφ (12.68)

It is seen that the spin connections and tetrads are always space-time properties
but that φ is defined by the scalar amplitude φ(0). The spin connection plays
the role of an “additional V̄ ”. Using experimental measurements to date the
three vector boson components E1,E2,E3 have been observed only as the static
field E without realizing that it has three labels. However, using the concept
of spin connection resonance [1]– [19] they become distinguishable, because E1

and E3 cause resonance but E3 does not. For convenience of development in
angular momentum theory we re-label the three components as:

E1 = E1 (12.69)

E2 = E0 (12.70)

E3 = E−1 (12.71)

12.3 Development of the electric vector boson
with angular momentum theory

Angular momentum theory is developed in ref. [18], volume one, chapter five.
In ECE theory, the electric field is a vector boson defined by:

E1 = −∇φ+ ωφ (12.72)

E0 = −∇φ (12.73)

E−1 = −∇φ− ωφ (12.74)

The components are written as (−1, 0,+1) to emphasize the angular momen-
tum character of the electric vector boson. In the simplest instance, angular
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momentum theory can be developed by considering O(3) vector relations. In
the Cartesian basis:

i× j = k (12.75)

k × i = j (12.76)

j × k = i (12.77)

where i, j and k are unit vectors. Defining the operator:

ĴZ := k× (12.78)

then:
ĴZi = 1j (12.79)

ĴZj = −1i (12.80)

ĴZk = 0k (12.81)

so the eigenvalues of ĴZ are −1, 0 and +1. In the complex circular basis [1]– [19]:

e(1) = e(2)∗ =
1√
2
(i− ij) (12.82)

e(2) = e(1)∗ =
1√
2
(i + ij) (12.83)

e(3) = e(3)∗ = k (12.84)

Thus, O(3) symmetry is represented by:

e(1) × e(2) = ie(3)∗ (12.85)

e(2) × e(3) = ie(1)∗ (12.86)

e(3) × e(1) = ie(2)∗ (12.87)

If we now define the operator:

Ĵ (3) := ie(3)× (12.88)

then:
Ĵ (3)e(1) = −1e(1) (12.89)

Ĵ (3)e(2) = 1e(2) (12.90)

Ĵ (3)e(3) = 0e(3) (12.91)

Thus Ĵ (3) is a type of angular momentum operator with eigenvalues −1, 0 and
1. These eigenvalues signify the existence of O(3) symmetry. These eigenvalues,
−1, 0 and 1, appear again in the matrix equivalents of i, j and k:

i =

 0 0 0
0 0 1
0 −1 0

 , j =

 0 0 −1
0 0 1
1 0 0

 , k =

 0 1 0
−1 0 1
0 0 0

 (12.92)

In the theory of irreducible tensorial sets, these rotation operators in Euclidean
space are first rank T̂ operators, which are irreducible tensor operators and

214



CHAPTER 12. VECTOR BOSON CHARACTER OF THE STATIC . . .

under rotations transform into linear combinations of each other. The T̂ oper-
ators are directly proportional to the scalar spherical harmonic operators. The
rotation operators of the full rotation group are related to the T̂ operators as
follows:

T̂ 1
−1 = iĴ (1) , T̂ 1

1 = iĴ (2) , T̂ 1
0 = iĴ (3) (12.93)

and are also related to the spherical harmonics and vector spherical harmonics
[18].

The complex circular basis (1), (2) and (3) is also a convenient basis with
which to represent the electric vector boson as follows:

E(1) = −∇φ− ω(1)φ (12.94)

E(2) = −∇φ+ ω(1)φ (12.95)

E(3) = −∇φ (12.96)

and the vector boson character of the static electric field may be represented as:

Ĵ (3)E(1) = −φω(1) (12.97)

Ĵ (3)E(2) = φω(2) (12.98)

Ĵ (3)E(3) = φ0 (12.99)

For plane waves the circularly polarized electric field is:

E(1) =
E(0)

√
2

(i− ij)ei(ωt−κZ) = E(2)∗ (12.100)

and its static limit may be defined as the limit:

ωt− κZ → 0 (12.101)

in which case:

Real (E(1)) = Real (E(2)) =
E(0)

√
2

i (12.102)

Im (E(1)) = −Im (E(2)) = −E
(0)

√
2

j (12.103)

Therefore the spin connection for plane waves is:

ω(1) = ω(2)∗ =
ω(0)

√
2

(i− ij)ei(ωt−κZ) (12.104)

This means that the frame itself is both spinning and translating. This is
an example of the more general spin connection of Cartan geometry.
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