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Abstract

Resonance solutions of the Einstein Cartan Evans (ECE) field equations are
obtained by developing them in terms of the electromagnetic potential to give
linear inhomogeneous differential equations whose solutions were first discov-
ered by the Jacobi’s and Euler (1739 - 1743). There are four such resonance
equations, and in a well defined approximation it is shown that resonance ab-
sorption from ECE space-time occurs. The net result is that electric power from
space-time is available in copious quantities given the circuit or material design
to take resonant energy from ECE space-time.

Keywords: Einstein Cartan Evans (ECE) unified field theory; resonant absorp-
tion from ECE space-time, energy from ECE space-time.

8.1 Introduction

The mathematical structure of Einstein Cartan Evans (ECE) unified field theory
is that of standard differential geometry [1] – [35] within a scalar valued factor
A(0), a vector potential magnitude. Thus, for example, the relation between
the electromagnetic field form (F ) and electromagnetic potential form ((A)) is
given by the first Cartan structure equation, and the field equations for F and
its Hodge dual F̃ are given by the first Bianchi identity. The Cartan structure
equations and the Bianchi identities are standard equations of Cartan geometry.
We use for clarity of mathematical structure a ”barebones” or index suppressed
notation [1] – [35] to give these equations as follows:

F = d ∧A+ ω ∧A, (8.1)
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8.1. INTRODUCTION

d ∧ F = µ0j, (8.2)

d ∧ F̃ = µ0J. (8.3)

Here j is the homogeneous current and J the inhomogeneous current, and µ0 is
the S.I. permeability in vacuo. The symbol ∧ is the wedge product, d∧ is the
exterior derivative and ω is the spin connection. These quantities and notation
are fully defined elsewhere [1]– [35]. The Hodge dual of Eq.8.1 is denoted:

F̃ = d∧̃A+ ω∧̃A (8.4)

= d ∧B + ω ∧B. (8.5)

From Eqs.8.1 and 8.2:

d ∧ (d ∧A+ ω ∧A) = µ0j (8.6)

and from Eqs.8.3 and 8.5:

d ∧ (d ∧B + ω ∧B) = µ0J. (8.7)

Eq.8.6 is the fundamental resonance equation of ECE field theory and Eq.8.7
is its Hodge dual. Eq.8.6 is a development of the well known linear inhomoge-
neous equation whose resonance solutions [36] were first given by the Bernoulli’s
and Euler (1739 - 1743). In general such equations give amplitude resonance,
potential and kinetic energy resonance, Q factors, transient and equilibrium so-
lutions, phase lags and other features of interest in many aspects of physics and
electrical engineering, notably circuit theory [36]. In Eq.8.6:

j =
A(0)

µ0
(R ∧ q − ω ∧ T ) (8.8)

where
T = d ∧ q + ω ∧ q (8.9)

is the torsion form [1]– [35] and where

R = d ∧ ω + ω ∧ ω. (8.10)

R is the Riemann form of standard differential geometry. Eqs.8.9 and 8.10 are
the first and second Cartan structure equations, sometimes known as the master
equations of differential geometry. Therefore Eq.8.6 is in general:

j =
1
µ0
d ∧ (d ∧A+ ω ∧A) (8.11)

where
A = A(0)q. (8.12)

Thus, the current j is a source of resonance absorption from ECE spacetime.
A similar conclusion can be reached for the Hodge dual resonance equation 8.7.
The potential A also obeys the ECE Lemma [1]– [35]:

�A = RA (8.13)
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where
R = −kT (8.14)

is a well defined scalar curvature, T is the index contracted canonical energy-
momentum tensor, and k is Einstein’s constant. Therefore the ECE Lemma is
the subsidiary proposition of the ECE wave equation [1]– [35]:

(� + kT )A = 0. (8.15)

Therefore the fundamental mathematical structure of standard differential ge-
ometry gives three equations, 8.6, 8.7 and 8.15 with which to investigate resonant
absorption of energy from ECE space-time.

In the standard model:
F = d ∧A, (8.16)

d ∧ F = 0, (8.17)

d ∧ F̃ = µ0J. (8.18)

Eqs.8.16 and 8.17 give the Poincaré Lemma [37]:

d ∧ (d ∧A) = 0 (8.19)

and the current j is missing. The current J in the standard model is introduced
empirically and is not recognized to originate in Cartan geometry. Therefore
many key resonance features are missing from the standard model, notably the
ability of ECE theory to take electric power from space-time in the shape of the
currents j and J . Within the factor A(0)/µ0 these currents are defined com-
pletely by the structure or geometry of space-time itself. In the standard model
of classical electrodynamics (the Maxwell Heaviside field equations) space-time
has no structure, it is the flat or Minkowski space-time and in consequence clas-
sical electrodynamics in the standard model cannot be unified with gravitation,
in which space-time is structured. Therefore electric power cannot be taken
from space-time in the standard model. This is contrary to the reproducible
and repeatable experiments [38] of the Mexican Group, which has observed am-
plification of power levels in excess of one hundred thousand in given circuit
designs, and amplification that is due to resonant absorption from ECE space-
time. This paper is the first to offer a detailed explanation of this important
phenomenon.

In Section 8.2 the fundamental resonance equation:

d ∧ (d ∧A+ ω ∧A) = µ0j (8.20)

is developed into four resonance equations in the vector notation used in elec-
trical engineering and circuit theory. One of these vector equations is solved
analytically using appropriate approximations. The result is resonance from
a driven undamped inhomogeneous structure. This simple analytical exercise
achieves our aim of showing that resonant absorption is possible from ECE
space-time, as observed experimentally [38]. Driven undamped resonance pro-
duces an infinite Q factor and infinite amplitude resonance at the fundamental
frequency [36]. More generally [36] the solutions of the linear inhomogeneous
equation give finite Q factors and phase factors, transient and steady state ef-
fects, and various types of resonances. These are briefly reviewed in Section 8.3
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8.2. THE RESONANCE EQUATIONS

for the simplest type of linear inhomogeneous second order differential equa-
tion [36]. Eq.8.20 is expected to have all these features in general, and several
more, and numerical methods will reveal all of them straightforwardly given ini-
tial and boundary conditions. Most generally resonance from ECE space-time
is described by solving Eqs.8.6, 8.7 and 8.15 simultaneously with given initial
and boundary conditions. However the simplest type of linear inhomogeneous
structure (Section 8.3) is sufficient to give the features expected, most impor-
tantly the ability of a circuit or material of given design to absorb j and J from
ECE spacetime and amplify them greatly.

8.2 The Resonance Equations

The source of electric current from ECE space-time is its torsion. In barebones
notation the currents are given by:

j =
A(0)

µ0
d ∧ T (8.21)

J =
A(0)

µ0
d ∧ T̃ . (8.22)

The torsion is defined by the tetrad and spin connection in the first Cartan
structure equation of differential geometry and the tetrad in turn is defined by
the eigenvalues of the ECE Lemma, Eq.8.13. The tetrad is the fundamental
field in the Palatini variation of general relativity and is a wave of space-time.
The potential field is governed by resonance equations, and within a factor A(0)

is the tetrad. In this section the resonance equation 8.20 is developed into vec-
tor notation for use in engineering. The spin connection is always defined by
the second Bianchi identity, and for the free electromagnetic field is the dual of
the tetrad in the tangent space-time [1]– [35]. The scalar curvature is defined
as eigenvalues of the ECE Lemma and is proportional to the index contracted
energy-momentum tensor through the Einstein Ansatz 8.14. Therefore energy
and momentum are transferred from R to j and J , and total energy and mo-
mentum are conserved. Total charge-current density is also conserved.

In the standard notation of differential geometry [1]– [35] the relevant equa-
tions are:

ja =
A(0)

µ0
d ∧ T a, (8.23)

Ja =
A(0)

µ0
d ∧ T̃ a, (8.24)

�qa = Rqa (8.25)

T a = d ∧ qa + ωa
b ∧ qb, (8.26)

D ∧ (D ∧ ωa
b) = 0. (8.27)

In the standard notation the tangent space-time indices appear but the base
manifold indices are the same on both sides of a given equation and are not
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written out [1]– [35]. If we restore these indices for the sake of illustration and
completeness Eqs.8.23 to 8.27 become:

ja
µνρ =

A(0)

µ0
(d ∧ T a)µνρ , (8.28)

Ja
µνρ =

A(0)

µ0

(
d ∧ T̃ a

)
µνρ

, (8.29)

�qa
µ = Rqa

µ (8.30)

T a
µν = (d ∧ qa)µν + ωa

µb ∧ qb
ν , (8.31)

D ∧
(
D ∧ ωa

µb

)
= 0. (8.32)

Therefore the barebones and standard notations must always be interpreted as
implying the presence of the various indices that appear in Eqs.8.28 to 8.32.
The advantage of the barebones notation is that it gives the basic structure
with greatest clarity. These equations and notations are fully developed and
explained in the literature [1]– [35] in differential form, tensor and vector no-
tation. The vector notation is used in this section because it is the notation
universally used in engineering. However all three notations are equivalent and
contain the same mathematical information. The differential form notation is
the most concise and elegant.

In the standard model
j = 0, (8.33)

R = 0, (8.34)

and there can be no battery powered by space-time, even on a qualitative level.
The reason for this is that classical electrodynamics in the standard model is
still the Maxwell Heaviside theory, which is a nineteenth century theory of spe-
cial relativity in which the field is thought of as a separate entity superimposed
on a Minkowski frame in four dimensions. To Maxwell, space and time were
still separate concepts, and there could be no structure to space-time. At the
time when Heaviside developed Maxwell’s quaternion equations into vector no-
tation (late nineteenth century), space and time were still thought of as separate.
Only when Lorentz and Poincaré developed the tensor notation of the Maxwell-
Heaviside field equations did space and time become unified into space-time.
This occurred at the beginning of the twentieth century. Even then however,
the electromagnetic field was still through of as an entity superimposed on a
SEPARATE Minkowski frame with metric diag (-1, 1, 1, 1). The concept of a
curving space-time appeared only in 1916, in the Einstein Hilbert (EH) theory
of general relativity, but that theory was applied only to gravitation, and not
to electromagnetism. In EH theory a field was thought of for the first time as
the curving frame of reference ITSELF, not as something superimposed on a
separate frame of reference. ECE theory, developed from 2003 onwards [1]– [35]
is a rigorously objective theory of general relativity in which the electromagnetic
field is the torsion of space-time itself and in which currents can be generated
by the torsion of space-time itself through Eqs.8.21 and 8.22. These currents
are real, observable and physical, and can be used for engineering. In ECE
theory electromagnetism is unified with gravitation using differential geometry
and space-time currents are a new source of energy that conserves Noether’s
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Theorem. This section is designed to show how the currents can be maximized
by resonance. In the standard model, again, there is no concept of spin connec-
tion, because the latter is the mathematical description of a spinning and curving
frame. When a frame itself spins or curves (or both spins and curves) the spin
connection must be non-zero. In electromagnetism the non-zero spin connec-
tion is observed through the Evans spin field [1] – [35] using the phenomenon of
magnetization by a circularly polarized electromagnetic field. This is known as
the inverse Faraday effect, and is rigorously reproducible and repeatable, occur-
ring in all materials and at all frequencies of the applied electromagnetic field.
The Evans spin field is therefore the definitive proof of general relativity in the
electromagnetic field. In the standard model the inverse Faraday effect must be
explained by assuming the existence of a cross product of complex conjugates
of the potential [1]– [35] or equivalently of the electric field or magnetic field.
Even this purely empirical description (occurring in non-linear optics [1]– [35])
did not appear until the mid fifties of the twentieth century and therefore was
not present in the original Maxwell theory and was not considered by Maxwell
or Heaviside. In summary one cannot describe the inverse Faraday effect self-
consistently and objectively without general relativity, which asserts that ALL
of the equations of physics must be generally covariant. This means that all
must retain their structure under the general coordinate transformation, i.e. all
of physics must be geometrical in nature. This is the very essence of general
relativity, and until this is realized field unification cannot occur in an objec-
tive manner. The Maxwell Heaviside equations do not obey this fundamental
requirement, because they retain their mathematical (tensorial) structure only
under the Lorentz transformation, as described in many texts [39]. In order
for the equations of electrodynamics to be generally covariant as required by
general relativity, the spin connection must be non-zero, and the Evans spin
field must be non-zero [1]– [35]. This is exactly what is shown experimentally
by the inverse Faraday effect.

The resonance equations developed in vector notation in this section origi-
nate in the ”master” equation 8.20, which in standard notation is:

d ∧
(
d ∧Aa + ωa

b ∧Ab
)

= µ0j
a, (8.35)

i.e.
d ∧ F a = µ0j

a (8.36)

where
F a = d ∧Aa + ωa

b ∧Ab. (8.37)

In tensor notation Eq.8.37 is [1]– [35]:

F a
µν = −F a

νµ = ∂µA
a
ν − ∂νA

a
µ + ωa

µbA
b
ν − ωa

νbA
b
µ. (8.38)

This equation can be developed into the electric field components:

F a
01 = −F a

10 = ∂0A
a
1 − ∂1A

a
0 + ωa

0bA
b
1 − ωa

1bA
b
0, (8.39)

F a
02 = −F a

02 = ∂0A
a
2 − ∂2A

a
0 + ωa

0bA
b
2 − ωa

2bA
b
0, (8.40)

F a
03 = −F a

30 = ∂0A
a
3 − ∂3A

a
0 + ωa

0bA
b
3 − ωa

3bA
b
0, (8.41)

and the magnetic field components:

F a
12 = −F a

21 = ∂1A
a
2 − ∂2A

a
1 + ωa

1bA
b
2 − ωa

2bA
b
1, (8.42)
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F a
13 = −F a

31 = ∂1A
a
3 − ∂3A

a
1 + ωa

1bA
b
3 − ωa

3bA
b
1, (8.43)

F a
23 = −F a

32 = ∂2A
a
3 − ∂3A

a
2 + ωa

2bA
b
3 − ωa

3bA
b
2. (8.44)

The vector description of the electric and magnetic fields follows by using
the following definitions in covariant/contra-variant notation [40]:

Aa
µ = (Aa

0,−Aa) , ωa
µb = (ωa

ob ,−ωa
b) , (8.45)

Aaµ =
(
Aa0,Aa

)
, ωaµ

b =
(
ωa0

b ,ω
a
b

)
, (8.46)

∂µ =
(

1
c

∂

∂t
,∇
)
, (8.47)

The contravariant electromagnetic tensor is:

Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

 (8.48)

and the contravariant four-derivative [1]– [35] is:

∂µ = gµν∂ν . (8.49)

Therefore there are electric field components such as:

F 01a = −1
c
E1a = ∂0A1a − ∂1A0a + ω0a

bA
1b − ω1a

bA
0b, (8.50)

i.e.
−1
c
Ea

x =
1
c

∂

∂t
Aa

x +
∂

∂x
A0a + ω0a

bA
b
x − ωa

xbA
0b, (8.51)

and it follows that the complete electric field vector is:

Ea = −∂A
a

∂t
− c∇A0a − cω0a

bA
b + cωa

bA
0b. (8.52)

Similarly there are magnetic field components such as:

F 12a = ∂1A2a − ∂2A1a + ω1a
bA

2b − ω2a
bA

1b = −B3a, (8.53)

i.e.

−Ba
z = −

∂Aa
y

∂x
+
∂Aa

x

∂y
+ ωa

xbA
b
y − ωa

ybA
b
x (8.54)

and the complete magnetic field vector is:

Ba = ∇×Aa − ωa
b ×Ab. (8.55)

The classical electromagnetic field equations of ECE theory [1]– [35] in vector
notation are:

∇ ·Ba = µ0j̃
a0, (8.56)

∇×Ea +
∂Ba

∂t
= µ0j̃a, (8.57)

∇ ·Ea = cµ0J̃
0a, (8.58)
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∇×Ba − 1
c2
∂Ea

∂t
=
µ0

c
J̃a, (8.59)

in which the currents are defined by:

j̃aν =
(

1
c
j̃a0, j̃a

)
, (8.60)

J̃aν =
(

1
c
J̃a0, J̃a

)
, (8.61)

Therefore the resonance equations are obtained by substituting Eqs.8.52 and
8.55 into each of Eqs.8.56 to 8.59.

The simplest equation is found by substituting Eq.8.55 into Eq.8.56 and
using the vector identity [41]:

∇ ·∇×Aa = 0 (8.62)

to give
∇ ·

(
ωa

b ×Ab
)

= −µ0j̃
a0. (8.63)

In this equation summation is implied over repeated b indices as follows:

∇ ·
(
ωa

0 ×A0 + · · ·+ ωa
3 ×A3

)
= −µ0j̃

a0 (8.64)

Therefore the charge density available from space-time is:

j̃a0 = −A
(0)

µ0
∇ ·

(
ωa

b × qb
)

(8.65)

where qb is the vector part of the tetrad.
A linear inhomogeneous [36] second order differential equation is found by

substituting Eq.8.52 into Eq.8.58 to give:

∇ ·∇Aa0 +
1
c

∂

∂t
(∇ ·Aa) + ∇ ·

(
ω0a

bA
b
)
−∇ ·

(
ωa

bA
0b
)

= −µ0J̃
0a.

(8.66)

As discussed further in Section 8.3, the linear inhomogeneous structure gives
resonance solutions and resonances in the current J̃0a. This is the key to ampli-
fication of currents from ECE space-time. These concepts and equations are also
used [36] in circuit theory for example, atomic absorption theory, or laser theory.
Before proceeding to derive the other two resonance equations of this section
the self-consistency of the mathematics being used is checked for Eqs.8.63 and
8.66 when the spin connection is dual to the tetrad [1]– [35]:

ωa
µb = −κεabcq

c
µ . (8.67)

Here κ has the units of wave-number (inverse metres) and the Levi-Civita symbol
is:

εabc = gadεdbc (8.68)

where gad is the metric of the tangent space-time (a Minkowski metric). There-
fore there are components [1]– [35]:

ω1
µ2 = −ω2

µ1 = κq3µ , (8.69)
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ω2
µ3 = −ω3

µ2 = κq1µ , (8.70)

and so on. For a = 0 Eq.8.63 is:

j̃00 = −A
(0)

µ0
∇ ·

(
ωa

b × qb
)

(8.71)

where the relevant component of the spin connection is:

ω0
µb = −κε0bcq

c
µ (8.72)

whose vector part is:
ω0

b = −κε0bcq
c. (8.73)

From the cyclically symmetric properties of εabc, summation over b in Eq.8.73
would be over space-like indices, 1, 2 and 3. From Eq.8.73:

ω0
1 = −κε01cq

c,

= −κ
(
ε012q

2 + ε012q
3
)
,

(8.74)

ω0
2 = −κ

(
ε021q

1 + ε023q
3
)
, (8.75)

ω0
3 = −κ

(
ε031q

1 + ε032q
2
)
. (8.76)

Therefore in this approximation:

ω0
b × qb = ω0

1 × q1 + ω0
2 × q2 + ω0

3 × q3

= −κ(ε012q2 × q1 + ε013q
3 × q1

+ ε021q
1 × q2 + ε023q

3 × q3

+ ε031q
1 × q3 + ε032q

2 × q3).

(8.77)

Now use the properties:
ε012 = −ε021 = 1, (8.78)

ε023 = −ε032 = 1, (8.79)

ε031 = −ε013 = 1, (8.80)

and use the complex circular basis ((1), (2), (3)) [1]– [35] to obtain:

j̃00 = 2κ
A(0)

µ0
∇ ·

(
q(2) × q(1) + q(1) × q(3) + q(3) × q(2)

)
. (8.81)

For plane waves:

q(1) = q(2)∗ =
1√
2

(i− ij) eiφ, (8.82)

and
∇ · q(2) × q(1) = 0. (8.83)

Also [1]– [35]:
q(1) × q(3) = −iq(2)∗ = −iq(1) (8.84)

and
q(3) × q(2) = −iq(2), (8.85)
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so

j̃00 = −2iκ
A(0)

µ0
∇ ·

(
q(1) + q(2)

)
= 0. (8.86)

Therefore it is found that:

j̃00 = j̃01 = j̃02 = j̃03 = 0 (8.87)

which is self-consistent with the fact that:

j̃ = 0 (8.88)

when Eq.8.67 applies, Q.E.D. Therefore the equation 8.63 is mathematically
self-consistent.

In order to check the consistency of Eq.8.66 recall that in the standard model
there is no spin connection, so Eq.8.66 reduces to:

1
c
·∂A

a

∂t
+ ∇ ·∇Aa

0 = 0. (8.89)

For each polarization index a, Aa
0 is the electric scalar potential φ. Using the

Lorentz condition:
1
c

∂φ

∂t
+ ∇ ·A = 0 (8.90)

it is found that Eq.8.89 reduces to:

1
c2
∂2φ

∂t2
−∇2φ = 0 (8.91)

i.e.
�φ = 0 (8.92)

which is the relativistic wave equation of the standard model for a scalar poten-
tial φ. In order to obtain space-time resonance however, the complete Eq.8.66
is needed.

The third resonance equation is obtained by substituting Eq.8.52 and 8.55
into Eq.8.57. Using the vector properties [41]:

∂

∂t
∇×Aa = ∇× ∂Aa

∂t
(8.93)

and
∇×∇a0 = 0 (8.94)

it is found that:

∂

∂t

(
ωa

b ×Ab
)

+ c∇×
(
A0bωa

b − ωa 0
b Ab

)
= µ0j̃a. (8.95)

This is a first order differential equation in the potential. The current j̃a is non-
zero if and only if the spin connection is non-zero. So the current j̃a is unique
to ECE theory and general relativity and does not occur in the standard model.
The self consistency of Eq.8.95 can be checked again by using Eq.8.67, in which
case we obtain:

ωa
b ×Ab = ω1

2 ×A2 + ω1
3 ×A3

=
κ

A(0)

(
A3 ×A2 + A2 ×A3

)
= 0

(8.96)
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and two more equations:

cA0b∇× ω1
b =

c

A(0)

(
A02∇×A3 +A03∇×A2

)
(8.97)

and
−cω10

c∇×Ab =
c

A(0)

(
A03∇×A2 +A02∇×A3

)
(8.98)

which self-consistently sum to zero, Q.E.D.
The final resonance equation is obtained by substituting Eqs.8.52 and 8.55

into Eq.8.59 and is:

1
c2
∂2Aa

∂t2
+

1
c

(
∇A0a −Ab0ωa

b + ωa 0
b Ab

)
+∇×

(
∇×Aa − ωa

b ×Ab
)

=
µ0

c
J̃a.

(8.99)
This is a generalization of the linear inhomogeneous structure discussed further
in Section 8.3 in which an analytical solution is given of Eq.8.99 in a well defined
approximation. The simple type of linear inhomogeneous structure [36] is:

ẍ+ 2βẋ+ ω2
0x = A cosωt (8.100)

which is a driven damped oscillator equation of classical dynamics. It is seen
that Eq.8.99 is a generalization of Eq.8.100. Solutions of Eq.8.100 were first
discovered by the Bernoulli’s and Euler (1739-1743) and show resonance in the
amplitude A of Eq.8.100, resonance in the kinetic and potential energies, Q
factors, phase lags, transient and steady state effects. Therefore Eq.8.99 has
similar solutions and is also more richly structured.

8.3 Analytical Solution

Eq.8.100 is a development of the linear inhomogeneous [36] class of equations:

d2y

dx2
+ a

dy

dx
+ by = f(x). (8.101)

In the special case:
f(x) = 0 (8.102)

Eq.8.101 reduces to the linear homogeneous class

d2y

dx2
+ a

dy

dx
+ by = 0 (8.103)

whose general solution is:

y = c1e
r1x + C2e

r2x, r1 6= r2, (8.104)

with the auxiliary equation

r2 + ar + b = 0. (8.105)

Eq.8.104 holds when the roots of Eq.8.103 are real and unequal, i.e. r1 6= r2. If
the roots of Eq.8.103 are imaginary (α± iβ), then:

y = eαx (c1 cosβx+ c2 sinβx)
= µeαx sin (βx+ δ) .

(8.106)
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Now let:
y = u (8.107)

be the general solution of
y′′ + ay′ + by = 0 (8.108)

and let
y = v (8.109)

be any solution of
y′′ + ay′ + by = f(x) (8.110)

then
y = u+ v (8.111)

is a solution of Eq.8.101. The function u is the complementary function and v is
the particular integral. One must find by inspection a function v that satisfies:

v′′ + av′ + bv = f(x). (8.112)

Eq.8.100 of Section 8.2 is a special case of the linear inhomogeneous class 8.100
and Eq. 8.100 can be rewritten as

mẍ+ bẋ+ kx = F0 cosωt. (8.113)

This is the equation of driven oscillation [37]. In Eq.8.113 the external driving
force varies harmonically with time, and is applied to the oscillator. The total
force on the particle is:

F = −kx− bẋ+ F0 cosωt (8.114)

and consists of a linear restoring force, −kx, (Hooke’s Law), and a viscous
damping force −bẋ. Therefore the master equation 8.35 of ECE theory has all
these features and is also more richly structured. In this Section an analytical
solution of Eq.8.99 is found in a well defined approximation using the properties
of the linear inhomogeneous class of equations 8.101.

Resonance solutions of Eq.8.113 are found from the complementary function
xc(t) and the particular integral xp(t). The former is:

xc(t) = e−βt
(
A1exp

((
β2 − ω2

0

)1/2
t
)

+A2exp
(
−
(
β2 − ω2

0

)1/2
t
))

(8.115)

and the latter is [37]:
xp(t) = D cos (ωt− δ) . (8.116)

It follows that

xp (t) = A
((
ω2

0 − ω2
)2

+ 4ω2β2
)−1/2

cos (ωt− δ) (8.117)

where

δ = tan−1

(
2ωβ

ω2
0 − ω2

)
(8.118)

The general solution is:
x(t) = xc(t) + xp(t). (8.119)
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The term xc(t) represents transient effects that depend on the initial conditions.
These damp out with time because of the factor e−βt. The term xp(t) repre-
sents steady state effects which dominate for t >> 1/p. The quantity δ is the
phase difference between the driving force and the resultant motion, i.e. a delay
between the application of force and the response of the system. For a fixed ω0,
as ω increases from 0, the phase increases from δ = 0 at ω = 0 to δ at π/2 and
to π as ω →∞.

The amplitude resonance frequency ωR is that at which the amplitude D is
a maximum. It is defined by:

dD

dω

∣∣∣∣
ω=ωR

= 0 (8.120)

i.e.
ωR =

(
ω2

0 − 2β2
)1/2

. (8.121)

We see that for an equation such as 8.92 in which ω0 and β are both zero, there is
no resonance. In an equation in which ω0 is zero but β is non-zero the resonance
frequency ωR is pure imaginary and unphysical. Therefore the requirement for
resonance is that ω0 and D be non-zero. If the amplitude D is initially zero it
cannot be maximized from Eq.8.120. These conditions are very important for
the resonant acquisition of energy and for resonant counter-gravitation.

The degree of damping in an oscillatory system is described by the quality
factor:

Q =
ωR

2β
. (8.122)

In loudspeakers for example [36] the values of Q may be a few hundred, in quartz
crystal oscillators or tuning forks up to 10,000. Highly tuned electric circuits
(of interest to extracting resonance energy from ECE space-time) may have Q
up to 100,000 [36]. This is the order of magnitude of the amplification observed
by the Mexican Group. The oscillation of electrons in atoms leads to optical
radiation. The sharpness of the spectral lines is limited [36] by the damping
due to loss of energy by radiation (radiation damping). The minimum width of
a line is, classically, about:

δω = 2× 10−8ω. (8.123)

The Q of such an oscillation is therefore of the order 107. The largest known Q
occurs from radiation from a gas laser, about 1014. Therefore resonant energy
from ECE space-time and resonant counter-gravitation are also governed by
such features. A current j (barebones notation) is set up by Eq.8.21 and can
set electrons in a circuit or within a material into resonant motion, producing a
resonance current from space-time as observed experimentally [1]– [35]. Eq.8.21
shows that the current is generated by the geometry of space-time itself.

Resonance in kinetic energy (T ) is defined by the value of ω for which T is
a maximum, where [37]:

T =
1
2
mẋ2 (8.124)

It is found from:
d 〈T 〉
dω

∣∣∣∣
ω=ωE

= 0 (8.125)
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and is
ωE = ω0 (8.126)

where

〈T 〉 =
mA2

4
ω2
((
ω2

0 − ω2
)2

+ 4ω2β2
)−1/2

. (8.127)

The potential energy is proportional to the square of the amplitude, and occurs
at the same frequency as amplitude resonance. The kinetic and potential en-
ergies resonate at different frequencies because the damped oscillator is not a
conservative system [36] of dynamics. Energy is continuously exchanged with
the driving system. In energy from ECE space-time energy is therefore contin-
uously exchanged between space-time and the circuit or material, total energy
being conserved by Noether’s Theorem.

Atomic systems within a material taking resonant energy from ECE space-
time can be represented classically as linear oscillators. When light falls on
matter it causes the atoms and molecules to vibrate. Similarly ECE space-time
causes the atoms and molecules to vibrate, light being ECE space-time within
the factor A(0) of Eq.8.12. A resonant frequency occurs at one of the spectral
frequencies of the system. When light (i.e. ECE space-time) having one of the
resonant frequencies of the atomic or molecular system falls on the material,
electromagnetic energy (i.e. energy from ECE space-time) is absorbed, causing
the atom or molecule to oscillate with large amplitude. This is what happens
in a circuit or material such as that of the Mexican Group [1]– [35]. A large
amount of energy is resonantly absorbed from ECE space-time. This can be
released as electric current or power, the governing equation is equation 8.35.
Large electromagnetic fields (ECE space-time dynamics) are produced by the
oscillating electric charges. Electric circuits are non-mechanical oscillations.
Therefore resonance theory and electric circuit theory can be used to explain
energy from space-time. The mechanism is clear from Eq.8.35, i.e.:

j =
A(0)

µ0
(d ∧ (d ∧ q) + d ∧ (ω ∧ q)) . (8.128)

The current j is picked up from ECE space-time and is represented by q and
ω of Eq.8.128, a driven damped oscillator equation. Amplitude, kinetic energy
and potential energy resonances occur. The electrons in a well designed circuit
or material oscillate in constructive interference, producing a surge of current
and electric power. This is observed experimentally in the reproducible and
repeatable work of the Mexican group of AIAS [1]– [35].

These qualitative remarks are underlined as follows with an analytical solu-
tion of Eq.8.99 with well defined approximations. First use

ωa
µb = −κεabcq

c
µ (8.129)

so
Ab0ωa

b = ωa0
bA

b, (8.130)

ωa
b ×Ab = 0. (8.131)

Then use

∇2Aa = −ω
2
0

c2
Aa, (8.132)
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∇ ·Aa = 0, (8.133)

∂A0a/∂t = 0, (8.134)

with:
∇× (∇×A) = −∇2A + ∇ (∇ ·A) . (8.135)

Eq.8.99 then simplifies to

1
c2
∂2Aa

∂t2
+
ω2

0

c2
Aa =

µ0

c
J̃a. (8.136)

This is an undamped driven oscillator, it has the structure of Eq.8.100 with

β = 0. (8.137)

From Eqs.8.132 and 8.133

Aa =
A(0)

√
2

(i− ij) e−iω0Z/c (8.138)

is a possible solution. From the analytical solution of Eq.8.100 already discussed
in this Section:

A(0) = A(0)
c +A(0)

p (8.139)

where
A(0)

c = A1e
iω0t +A2e

−iω0t (8.140)

A(0)
p = D, (8.141)

assuming:
µ0

c
J̃a = Aa (i− ij) cosωt (8.142)

Resonance occurs at
ωR = ω0 (8.143)

with:
δ = 0, Q→∞,

D →∞.
(8.144)

In this case there is a surge of current of infinite amplitude:

J̃a →∞ (8.145)

because there is no damping. This simple illustration, using well defined approx-
imations, shows how resonant energy from space-time occurs mathematically
within ECE theory. More realistic results with finite damping can be produced
numerically from Eq.8.99, and under certian conditions will reproduce the fac-
tor of 100,000 amplification observed by the Mexican Group [1]– [35] and found
independently to be reproducible and repeatable.
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