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ABSTRACT 

The quantization rules of m theory developed in immediately preceding papers are 

applied to the analytical solutions of the Schroedinger equation. In each case the solution 

becomes one of generally covariant quantum mechanics, i.e. quantum mechanics unified with 

general relativity. 
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1. INTRODUCTION 

In the immediately preceding papers of this series { 1 - 41}, quantization rules were 

developed for generally covariant quantum mechanics (quantum mechanics unified with 

general relativity). In Section 2 of this paper they are applied to some well known analytical 

solutions of the Schroedinger equation such as the harmonic oscillator. It is shown that the 

use of the most general spherically symmetric space results in shifts of the well known 

solutions in the non relativistic limit of the Schroedinger equation. In Section 3 the method is 

applied in computational quantum mechanics with an ab initio technique. The use of an m 

space produces small but significant effects. Them space can be thought of as "the vacuum", 

and the most well known vacuum effect is the Lamb shift. So the m theory can be used to 

eliminate the non Baconian ideas of quantum electrodynamics. 

This paper is a brief synopsis of notes accompanying UFT436 on www.aias.us . 

Note 436(1) deals with the harmonic oscillator, Note 436(2) with the anharmonic oscillator, 

Note 436(3) gives a general law of spectral effects of m space, or the vacuum, and Note 

436( 4) gives a separation of variables solution of the Schroedinger equation. Note 436( 5) 

discusses the expectation values of the complete Schroedinger equation. 

2. EFFECT OF m THEORY ON ANALYTICAL SOLUTIONS. 

Consider the non relativistic limit of quantum mechanics, governed by the 

Schroedinger equation: 

J. J;)f _( 
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where ~ is the complete wavefunction, U ( r) is the potential energy,,.( is the reduced 

Planck constant and m the mass of the particle under consideration. As shown in detail in 

Note 436(4), Eq. ( i. ) can be solved by writing: 



thus producing two equations: 

and 

giving the complete solution: 

where E are the energy levels. 

The quantization rules of the immediately preceding papers modify the 

wavefunction as follows: 

to produce the generally covariant wavefunction, the wavefunction in the presence of the 

-vacuum. So the general solution ( ,> ) becomes 
-(~) 

Some examples of well known analytical wavefunctions in the absence of the vacuum are 

given as follows. 

1) The free particle energy levels are: 



and the time dependent wavefunction is: 

2) The harmonic oscillator energy levels are: c 0 
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where xis a measure of anharmonicity, and ( ( ~ ~ _ (\4-\ 
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4) The energy levels of the particle in a box in well known notation are: 
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and: 

5) The well known energy levels of the H atom are: 



so its time dependent wavefunction is: 

The expectation value of energy from Eq. ( ~ ) is: 
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If the wavefunction is correctly normalized then: 
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so: 

and the energy expectation value is: 

Therefore in the generally covariant quantum mechanics of m space, the energy levels are 

shifted. The extent of the shift is determined by the m function and the time dependent 

wavefunction. 

The energy levels ofthe Schroedinger equation ( 1_ ) are given in general by the 

expectation value calculated over the complete wavefunction ( * ). So: 
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However: 

In m space this becomes: 

and in m space there are shifts and splittings produced by them ( r) function, Q.E.D. 



Generally covariant quantum mechanics can be thought of as quantum mechanics . 
in the presence of the vacuum. The most well known vacuum induced shift is the Lamb shift, 

which requires consideration of the spin quantum number, but in the non relativistic 

approximation the Schroedinger equation can be used. Finally, as shown in Note 436(5), the 

In m space: 

so: 

In the same m space Eq. ( ~d,..) becomes: ~\ 
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so the energy levels of the complete Schroedinger equation in m space are: 

t) 1J)t \ 
f .,. ~ 1\-lll(<) f) 6.:( - -)_~>.• 'f I -~-l<)-.,1, 

; ( J ([ 
T .Jr, -fC)'ll) 



Quantization rules applied to analytical solutions

of the Schrödinger equation

M. W. Evans∗, H. Eckardt†

Civil List, A.I.A.S. and UPITEC

(www.webarchive.org.uk, www.aias.us,
www.atomicprecision.com, www.upitec.org)

April 12, 2019

3 Graphical examples and application to quan-
tum chemistry

3.1 Examples of wave functions in m theory

First we present some graphics of analytical solutions of the Schrödinger equa-
tion. One basic system often used for describing quantum effects is the harmonic
oscillator. It exhibits energy levels and time eigenfunctions as given by Eqs. (11)
and (12). The radial eigenfunctions are complicated functions of Hermite poly-
nomials and given in note 436(1). A remarkable property is the existence of
a zero point energy E = 1

2~ω for the lowest quantum state n = 0. The eigen
functions of the harmonic oscillator are graphed in Fig. 1 for the lowest states.
They are even and odd functions around the centre r = 0. In case of m theory
the radial coordinate is replaced by

r → r

m(r)1/2
. (38)

This leads to sharp edges and stretching in the eigenstates at r = 0 as can be
seen from Fig.2. The symmetry or antisymmetry remains intact.

The anharmonic oscillator is much more complicated to handle but an ana-
lytical solution for the Schrödinger equation is known, see note 436(2). There is
an asymmetry factor x ∝ 1/ω in energies and eigenfunctions. The asymmetric
potential of this oscillator type leads to asymmetric eigenstates as graphed in
Fig. 3. The eigenstates depend on generalized Laguerre polynomials. Using the
transformation (38) to m space, a similar effect as for the harmonic oscillator
appears: The functions have wide jumps or get sharp edges at the origin (Fig.
4). This is a consequence of the m function which is effective near to the origin.
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3.2 m theory in Quantum Chemistry

We have developed an example of m space effects impacting Quantum Chem-
istry. The computer code used is based on an ab initio method, the Local
Density Approximation (LDA), and solves either the Schrödinger equation (non-
relativistic case) or the Dirac equation (relativistic case) or the squared Dirac
equation (so-called scalar-relativistic calculation)1. Spin-polarized calculations
can be performed with the first two cases.

In the LDA method the equations for the N-electron system are reduced to
effective 1-electron equations for each electron (i.e. orbital occupation). The
effective potential to be used is (in atomic units)

Ueff(r) = Ucore(r) + Uel(r) + Uxc(r) (39)

with core potential

Ucore(r) = −Z/r, (40)

electron potential

Uel(r) =

∫
ρ(r′)

r− r′
dτ ′, (41)

and so-called exchange-correlation potential

Uxc(r) = Uxc[ρ(r)]. (42)

The main problem is the handling of exchange and correlation of the N-electron
system (interaction of electrons according to Pauli’s exclusion principle) so that
an effective 1-electron equation remains to be solved. There are several ap-
proaches to this problem but the differences cannot be seen in charge density
plots we provided as examples below.

The wave functions ψi follow as solutions of e.g. the Schrödinger equation
and the charge density is

ρ(r) =
∑
i

|ψi(r)|2 . (43)

Because the charge density enters the potential which in turn determines the
solutions of the Schrödinger equation, both computations have to be iteratively
repeated until self-consistency is reached. A similar problem was already dis-
cussed for Hydrogen bonding2 where the full ECE potential including the spin
connection was considered. In order to obtain resonant states, a similar self-
consistency cycle was proposed.

We computed the atomic charge density of a Nickel atom as an example.
Ni has 18 core electrons and 10 valence electrons in configuration 3d84s2. The
configuration can be changed e.g. to compute ionization energies for the ion
3d84s1 or spin-ordered states which play a role in the Ni solid. The relevant
quantity in such calculations is the total energy.

1H. Gollisch and L. Fritsche; ”Relativistic One-Particle Equation for Electron States of
Heavy Metals”, phys. stat. sol. (b)86, 145 (1978)

2Myron Evans, Douglas Lindstrom, Horst Eckardt; ”ECE Theory of Hydrogen Bonding”,
International Conference on Water, Hydrogen Bonding Nanomaterials and Nanomedicine;
Banja Luka, September 4, 2010
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In our example we have first graphed the total charge density concentrated
in spherical shells, 4πr2ρ, see Fig. 5. This is what can be sampled by XPS
experiments for example. The three shells of the principal quantum numbers
can be seen. For a more detailed view the valence charge density ρval alone
is shown in Fig. 6. The 3d shell, which is separated from the s electrons,
is well visible. When performing the radial coordinate transformation (38),
the charge density near to the origin is shifted to larger radii. This effect can
be observed in Fig. 6 where we have used the exponential m function with
parameter R = 5 · 10−4a0. Due to the logarithmic scale, differences near to
the origin are clearly visible. As a second modification we have graphed the

modified density ρ(r)
m(r)1/2

. Near to the lowest radial grid points, the density is

enlarged by a factor of 2. The question is if this has a remarkable effect on the
total charge which is the integral over the charge density. The integral∫

ρ(r)

m(r)1/2
dτ (44)

which gives the number of electrons in the case m(r)=1, deviates from N=28 (for
atomic nickel) only in the fifth decimal place. The differences are not visible
if the charge density of spherical shells of Fig. 5 is considered. This shows
that for quantum-chemical calculations it could be sufficient to apply m theory
a posteriori as a perturbation effect, although the density is altered significantly
near to the origin. The situation is different for nuclear physics where the
structure of the nucleus is impacted – and possibly completely determined – by
m theory.
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Figure 1: Eigenstates of the harmonic oscillator.

Figure 2: Eigenstates of the harmonic oscillator, m theory.
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Figure 3: Eigenstates of the anharmonic oscillator.

Figure 4: Eigenstates of the anharmonic oscillator, m theory.
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Figure 5: Total charge density of a Ni atom, spherical 4πr2ρ.

Figure 6: Valence charge density ρval of a Ni atom, effects of m space.
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