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ABSTRACT 

The m theory of the strong nuclear force is developed by equating the attractive 

force from m space inside the nucleus to the well known Woods Saxon (WS) model ofthe 

attractive strong nuclear force between protons and neutrons. TheWS model parameters are 

interpreted in terms of the m function and its derivative with respect to r. The low energy 

"" nuclear reaction of two particles such as p and Ni outside the nucleus is made possible 

under the condition in which the attractive m force between goes to infinity and exceeds the 

t~ .. l-
Coulombic repulsion (the Coulomb barrier). The resulting ~' \complex is unstable and 

L3 
decomposes to Cu and mega electron volts of energy, with other product particles. 

Keywords, ECE unified field theory, m theory of the strong nuclear force and LENR. 



1. INTRODUCTION 

In immediately preceding papers of this se:ies { 1 - 41 } , classical and quantum 

mechanics have been developed in the most general spherically symmetric space, denoted m 

space, resulting in many important advances (UFT415- UFT430). This theory has been 

named "m theory". In Section 2 them theory is applied to the nuclear strong force that binds 

together the protons and neutrons of a nucleus, and which exceeds the repulsive force 

between protons in a stable nucleus. The m theory is also applied to the low energy nuclear 
t~ 

reaction between a proton and a Ni nucleus. In the vicinity of the nucleus the ubiquitous 

and attractive m force can go to infinity under circumstances defined in immediately 
(,4 

preceding papers, and overwhelms the Coulomb barrier. The resulting Ni p complex is 
blo 

unstable and transmutes to Cu, mega electron volts of energy and other products. The 

energy appears in the form of heat and intense visible I ultra violet radiation, the broad band 

"~ emission spectrum of Ni vapour. In Section 3 the main results are developed with 

computer algebra and graphics. 

This paper is a short synopsis of extensive calculations given in its accompanying 

notes. Note 431(1) develops the wave particle dualism ofthe energy equation ofm theory 

and expresses m ( r) in terms ofthe well known ECE wave equation. Note 431(2) develops a 

new expression form space energy. Notes 431(3) to 431(5) develop them theory of low 

energy nuclear reactions, using the entirely new concept ofthe attractive force ofm theory 

and its ability to become infinite under well defined conditions. This tuning of them force is 

achieved by experimentation, by designing the conditions under which LENR can take place. 

Finally Note 431(6) develops them theory of the attractive strong nuclear force between 

protons and neutrons by equating the attractive m force with the Woods Saxon (WS) model 

ofthe attractive nuclear strong force. 



2. THE ATTRACTIVE FORCE DUE TOm SPACE 

This generally covariant force is entirely new to physics and is a discovery of the 

ECE generally covariant unified field theory { 1 - 41}. It was shown in UFT 427 that it is: 

1\.G:) 1/) \: - ( ') 

)_~(_() - < J.._t\.._(·{) 

where E is the energy of m space, defined by: U 

t-~C<)~J G '+. 

Herem ( r) is defined by the infinitesimal line element of the most general spherically 

symmetric space. In the Minkowski space of special relativity it is unity, in which case Eq. 

( ~ ) reduces to the well known Einstein energy equation: 

-0) 

Here p is the relativistic momentum. As shown in Note 431 ( 1 ), Schroedinger quantization of 

Eq. ( J._ ): 

Ieadstothed'Aiembertwaveer~ t ~(0 ( TYJ 1 _ 0 _ (~ 

~ " 
where ~ is the inverse tetrad, G.> ~ is the Cartan spin connection and 

~ ~ 
gamma connection. Therefore ~ (~is a property of geometry. 

(\ r is the 

r"' 



If the particle of mass m is at rest then: 
) 

and the attractive force due tom space is: I I :J 

~(;_.Lj __ 
~V\..(r)- t J..~(() 

M 
Under the condition: 

~ )~C~) -(~ 

this becomes infinite as discussed UFT417 and UFT430. From Eq. ( f ) the mass of all 

the elementary particles can be expressed as: 

~, --
where m is a fundamental scaling mass whose existence is implied by unit analysis. 

A low energy nuclear reaction can be explained by using the new m force of physics. 

Without this m force there is no explanation of why a proton can overcome the Coulomb 

""'" barrier with ~i in a mixture of nickel powder and hydrogen. Such a mixture produces a 

well known low energy nuclear reaction (LENR) with release of heat and intense visible 

''+: 
frequency light. The total force between the proton p and ~,·separated by a distance r is: 

1/) 

~c(; . 
- \:. 
-

:11\..l() - ( ~fl-.((?_ 
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where Z ' and Z ") are the atomic numbers of p and . ('{ . Under the condition: 

:> 
( 



L'+ 
the attractive m force overwhelms the repulsive Coulomb barrier and p and Ni form a 

b; 
complex that is unstable and which transmutes to Cu, mega electron volts of energy, and 

other products of the transmutation. The great amount of energy released is due to the 

decrease in mass between reactants and products: 

and the energy is released in the form of heat and intense visible frequency light. LENR is 

well established, and is a reproducible and repeatable process. The U. S. and other 

Governments, and many companies, have been awarded LENR patents. 

Without them force, however, there is no explanation for it in the old physics, 

..1--' 

because the 5;\\"t':J nuclear force is confined to the nucleus and does not exist outside the 

nucleus. In the old physics there was just a Coulomb barrier. It is well known that this was 

first overcome by Cockcroft and Walton in 1932 using protons accelerated with 750,000 

volts. 

In the standard model the nuclear strong force binds the nucleus together and can be modelled 

with the well Woods Saxon p-vtial (~FT226 ff.): L\. 
0 

- _ Ct ~ 

whlch produces the Woods Saxon attractive strong ~:le::o~ce( ( - ~~) 
\ -



Here R is the radius of the nucleus, U 0 ls th7 potential well depth, and q J the surface 

thickness of the nucleus. The surface of the nucleus is made up of neutrons, inside of which 

thee is a mixture of neutrons and protons. Therefore inside the nucleus the m force can be 

identified with the Woods Saxon force, resulting in the equation: 

~ (~) ------- - ___ _..... 

~~l<)- ( 

where 

principle using computer algebra. Inside the nucleus the resonance condition: 

means 

from Eq. ( \ b ). This means an infinitely tightly bound nucleus with an infinitely thin 

surface shell. At the point: 

R 

the differential equation ( \ b ) simplifies to: 

Y\-(<') 1"'-t) ,_ ( ~v,J{)- R J_"'~ 

As can be seen from the graphics of Section 3, the Woods Saxon ~u, (or 



nuclear strong force) is very short ranged and does not exist outside the nucleus. Therefore 

the balance of forces ( \ 0 ) outside the nucleus determines whether or not a low energy 

nuclear reaction can take place. Inside the nucleus, Eq. ( \ b ) gives them theory of the 

nuclear strong force. Them force ( 1._ ) is deduced in UFT427 by comparing them force 

given by the Euler Lagrange development ofUFT417 with the Hamilton development of 

UFT427. The existence of them force is a theoretical explanation for low energy nuclear 

reactions of all kinds. 
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3 Computation and discussion

3.1 Comparison of m space force and Coulomb force

First we compare the force of m theory with the Coulomb force. We used femto-
meters (10−15m) as length units. This requires a re-scaling of formulas which
is a bit tricky. For example in dm(r)/dr, m(r) can be defined on a fm scale
but differentiation produces a factor of 1015 in SI units. A similar problem
occurred for the Coulomb potential. The radius of the Ni atom (3.78 fm) has
been marked in the graphs.

Fig. 1 shows the total relativistic energy of a 64Ni nucleus in m space,
using p=0 (stationary atom, see Eq. (7)). The atomic mass of this isotope
is 63.927967 a.m.u. The energy is constant outside the nuclear radius, starts
decreasing near to the radius and goes to zero at the centre according to the m
function. This means that the relativistic energy is not constant but impacted
by m space.

Fig. 2 compares the force F of m theory, Eq. (15), with the Coulomb force
of a point charge at r = 0. It is seen that F outperforms the Coulomb force by
a multiple at the nuclear radius. Inside the nucleus, we should have a different
Coulomb force, this picture is only for demonstrating the size relations. The
same graphs are shown in Fig. 3 with different scaling. In addition, the Coulomb
force of m space,

F1(r) = m(r)
28 e2

4πε0r2
, (22)

has been graphed, using

m(r) = 2− exp
(

log(2) exp(− r
R

)
)

(23)
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as in previous papers. It is seen that the m function reduces the Coulomb force
but this is by far not enough to bring the Coulomb barrier at the nuclear radius
to zero (observe the different exponential scale factors in this graph).

3.2 Resonant m force and Woods-Saxon force

The nuclear Woods-Saxon potential, Eq. (14), is graphed in Fig. 4, together
with the resulting force, Eq. (15). The parameters were chosen as R = rNi,
aN = rNi/20 and U0 was set to unity or scaled to other curves, respectively.
The Woods-Saxon force only appears in the surface region of the nucleus whose
thickness is defined by aN . We used three different forms of the m function to
model a resonant behaviour of the m force:

m1(r) = 2− exp
(

log(2) exp(− r
R

)
)
, (24)

m2(r) = 1− 1

exp
(

r−R
aN

)
+ 1

, (25)

m3(r) =

{
r2

2R2 for r < R,

1− R

4(r−R
2 )

for r ≥ R. (26)

The first m function is the usual model we used so far and not resonant. The
second is an adaptation of the Woods-Saxon potential and the third is a form
already introduced in UFT 417. It was found that m(r) ∝ r2 leads to an infinite
force. All three functions are graphed in Fig. 5. The three forces arising from
these functions via Eq. (8):

F (r) = −dmi(r)

dr

mi(r)

2mi(r)− r dmi(r)
dr

mc2 (27)

are graphed in Fig. 6. F1 is the m force of Fig. 2 which - although not
resonant - is already sufficient to outperform the Coulomb barrier as discussed
above. F2 makes up a pole so has a resonance near to the nuclear radius. To
shift the pole to the radius, the parameter R would have to be modified to a
value different from the nuclear radius. This type of resonance does the job
outside the nucleus. The unsteady jump of the force may be a hint that the
model is somewhat simplistic. A high positive force just below the radius could
result in an unstable transition when a proton passes the Coulomb barrier.

The third alternative form m3(r) gives resonance enhancement at the correct
radial position. The force is infinite in the internal region by construction but
could be modified to give a constant or vanishing force in the interior.

As explained in section 2, equating the force of m theory with the Woods-
Saxon force leads to a differential equation for m(r), see Eq. (16). This equation
is quite complicated and has no analytical solution. One can restrict consider-
ation to the region r ≈ R which leads to the simplified equation (21). For this
equation, computer algebra delivers a quasi-solution

−4aNmc2 m(r)− U0r

2aN
√

m(r)
= C (28)
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where C is an integration constant with dimension of an energy. Developing this
equation leads to a quadratic equation for m(r). The two solutions are (with
C = U1):

m(r) =
1

8aNm2c4

(
2U0rmc

2 − U2
1 aN ±

√
4U0aNmc2r + U1

2aN 2

)
. (29)

This is an equation of type

m(r) = ar ±
√
br. (30)

This function is nearly linear, at least for the parameter sets we have tested.
An example is graphed in Fig. 7. By definition this approach is only valid in
the region r ≈ R.

3.3 Solutions of the wave equation

The d’Alembert wave equation was derived in Eq. (5). This is the quantized
form of the Einstein energy equation (2). In the static case the wave equation
reads:

∇2ψ(r) +
(mc

~

)2
m(r)ψ(r) = 0. (31)

For m(r)=const. we obtain the well known oscillatory solutions. Assuming
spherical symmetry, this equation can be reduced to the radial part of the
Laplace operator:

∂2ψ(r)

∂r2
+

2

r

∂ψ(r)

∂r
+
(mc

~

)2
m(r)ψ(r) = 0. (32)

Now we transform the radial coordinate r to another coordinate x by using the
constant k as an abbreviation:

k =
mc

~
, (33)

x = k r. (34)

This lets us get rid of the squared factor in (32):

∂2ψ(x)

∂x2
+

2

x

∂ψ(x)

∂x
+ m(x)ψ(x) = 0. (35)

For the m function we choose the approximation

m(r) = 1− r20
r2
. (36)

By introducing the new constant

x0 = k r0 (37)

m(r) can be transformed to the form

m(x) = 1− x20
x2
, (38)
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so the wave equation can finally be written in the simple form

∂2ψ(x)

∂x2
+

2

x

∂ψ(x)

∂x
+

(
1− x20

x2

)
ψ(x) = 0. (39)

This equation is nearly identical to the Bessel differential equation:

∂2ψ(x)

∂x2
+

1

x

∂ψ(x)

∂x
+

(
1− x20

x2

)
ψ(x) = 0. (40)

The only difference is the factor 1/x instead of 2/x which cannot be trans-
formed away. Therefore the solutions of the wave equation are expected to be
very similar to the well known Bessel functions which are the solutions of the
original Bessel differential equation. The constant x0 determines the degree of
the solution, i.e. the zeros and the positions of maxima. Since x0 depends on
the particle mass m, this equation contains the mass spectrum of elementary
particles, and the particle radius is also defined by x0. This is a first step to com-
puting mass and internal mass density of elementary particles. The equation
has to be solved numerically.

We did an exemplary solution for the wave equation and the original Bessel
equation with the same initial conditions. The results are graphed in Fig. 8. It
is seen that the zero crossings are slightly shifted and the decay is more rapid
for the solution of the wave equation. Concerning particle properties, it has
to be decided for example how to interpret the border of the particle (fist zero
crossing?) and if a horizontal tangent is required at r = 0.

Inserting a series expansion for ψ(x) will presumably lead to an eigenvalue
problem from which the mass spectrum is obtained as a eigenvalues with as-
sociated wave functions as eigen functions. This procedure is in full analogy
to quantum chemical calculations and can be developed by known methods of
numerical mathematics.
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Figure 1: Relativistic energy of 64Ni nucleus.

Figure 2: Force of m theory and Coulomb force.
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Figure 3: Force of m theory and Coulomb force, smaller radial scale. Observe
the exponential factors when comparing.

Figure 4: Woods-Saxon potential and corresponding force.
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Figure 5: Three models of m functions.

Figure 6: Resonance solutions for m space force.
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Figure 7: Solutions of m(r) for the approach r ≈ R.

Figure 8: Solution of Bessel equation and wave equation for particles.
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