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Abstract

The conventional definition of the Riemann tensor is shown to be incomplete be-
cause the torsional component is missing. The commutator of covariant deriva-
tives acting on the four vector is shown to produce a tensor that is conventionally
antisymmetric in its first two indices (the conventional curvature or Riemann
tensor) stemming from the use of the Christoffel connection. More generally
both the Riemann and torsional tensors are asymmetric in their first two in-
dices because there is no torsion free condition in general. The complete tensor
is the sum of these two tensors and is named the S tensor, and the generalized
Einstein Hilbert field equation deduced for the S tensor. In this way spin or
torsion is introduced into general relativity in a novel and fundamental manner,
and the ramifications of this modification work through into all areas of dynam-
ics.
Key words: Riemann tensor, torsion, commutator of covariant derivatives, round
trip with covariant derivatives, general relativity.
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17.1. INTRODUCTION

17.1 Introduction

The theory of relativity [1] is based conventionally on Riemann geometry and the
use of the Christoffel connection [2], which is symmetric in its lower two indices.
The Einstein Hilbert field equation is deduced from the second Bianchi iden-
tity with the torsion free condition stemming from the Christoffel connection.
In consequence all the information given from considerations of gravitational
torsion is lost. Recently [3]– [25] it has been realized that the electromagnetic
field tensor is spacetime torsion within a C negative vector potential magnitude
A(0). This is electromagnetic torsion as distinct from the novel gravitational
torsion considered in this paper. Therefore torsion is fundamentally important
in relativity theory and cannot be neglected. The role of torsion is seen most
clearly through the Cartan structure equations and the Bianchi identities of
Cartan geometry.

In Section 17.2 the commutator of covariant derivatives acting on the four
vector V µ in the four dimensions of spacetime is shown to produce in general a
sum of two tensors, a sum that premultiplies the vector itself. In addition there
are four other terms which premultiply the four derivative of the vector. One of
the terms that premultiply the four vector itself has the same structure as the
conventional Riemann tensor, but in general the connections within this tensor
are asymmetric in their lower two indices, and are not torsion free and are not
Christoffel connections in general. The second tensor premultiplying the vector
itself is novel to this work, and is named the torsional tensor. The symmetries
of the various connections within the torsional tensor are determined by the
commutator itself. The sum of these two tensors is named the S tensor in
order to distinguish it from the conventional Riemann tensor. The S tensor
is therefore defined as the sum of the two tensors that premultiply the vector
itself. The S tensor is always needed for a complete description of gravitation
in a spacetime with both curvature and torsion present - the Evans spacetime
of unified field theory [3]– [25].

In Section 17.3 the generalization of the Einstein Hilbert field equation is
deduced for the S tensor, showing the presence of novel terms due to gravita-
tional torsion. In general gravitational torsion affects cosmological observations,
but gravitational torsion is neglected in conventional general relativity. The lat-
ter appears to be very accurate for the solar system [26] but in other contexts
appears to be very inaccurate [27]. Therefore the presence of gravitational tor-
sion is indicated experimentally by data which cannot be explained with the
conventional Riemann tensor. This is unsurprising in retrospect because the
Riemann tensor is always predicated on the assumption that the connection is
the Christoffel connection. This assumption is equivalent to assuming that there
is no torsion in the universe, and there is no a priori reason why torsion should
be absent, in unified field theory, torsion is the fundamental electromagnetic
field itself.
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CHAPTER 17. THE ROLE OF GRAVITATIONAL TORSION IN . . .

17.2 Derivation Of The S Tensor

The S tensor is derived straightforwardly by operating on the four-vector V ρ

with the commutator of covariant derivatives. This is how the Riemann tensor is
derived conventionally [2], but with the torsion free condition always assumed.
There are four terms missing from the derivation by Carroll [2], a derivation
which is corrected as follows to produce the S tensor.

Consider the commutator of covariant derivatives Dµ, acting on the four
vector V ρ in Evans spacetime:

[Dµ, Dν ]V ρ = (DµDν −DνDµ)V ρ (17.1)

The covariant derivative is defined by:

DνV
ρ = ∂νV

ρ + Γρ
νσV

σ (17.2)

and in general the connection Γρ
νσ is asymmetric in its lower two indices, indi-

cating the simultaneous presence of curving and spinning:

Γρ
νσ 6= Γρ

σν . (17.3)

The Christoffel connection is symmetric in its lower two indices:

Γρ
νσ 6= Γρ

σν (17.4)

indicating the absence of spinning or torsion, but the presence of curving. From
Eqs. (17.1) and (17.2):

[Dµ, Dν ]V ρ = ∂µ (∂νV
ρ + Γρ

νσV
σ)

− Γλ
µν (∂λV

ρ + Γρ
λσV

σ)

+ Γρ
µσ

(
∂νV

σ + Γσ
νλV

λ
)
− (µ↔ ν).

(17.5)

Now use the Leibnitz Theorem to obtain:

[Dµ, Dν ]V ρ = ∂µ∂νV
ρ +

(
∂µΓρ

µσ

)
V ρ + Γρ

µσ∂µV
σ

− Γλ
µν∂λV

ρ − Γλ
µνΓρ

λσV
σ

+ Γρ
µσ∂νV

σ + Γρ
µσΓσ

νλV
λ

− ∂ν∂µV
ρ −

(
∂νΓρ

µσ

)
V σ − Γρ

µσ∂νV
σ

+ Γλ
νµ∂λV

ρ + Γλ
νµΓρ

λσV
σ

− Γρ
νσ∂µV

σ − Γρ
νσΓσ

νλV
λ

. (17.6)

Finally rearrange terms and dummy indices to obtain:

[Dµ, Dν ]V ρ =
(
∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

µλΓλ
µσ

+
(
Γλ

νµ − Γλ
µν

)
Γρ

λσ

)
V σ

−
(
Γλ

µν − Γλ
νµ

)
∂λV

ρ

+ Γρ
µσ∂νV

σ − Γρ
νσ∂µV

σ

:=
(
Rρ

σµν − Γρ
λσT

λ
µν

)
V σ − T λ

µν ∂λV
ρ

+ Γρ
µσ∂νV

σ − Γρ
νσ∂µV

σ .

(17.7)
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17.2. DERIVATION OF THE S TENSOR

The S tensor is defined as the sum:

Rρ
σµν := Rρ

σµν − Γρ
λσT

λ
µν (17.8)

Of the general Riemann tensor Rρ
σµν (denoted henceforth as the R tensor) and

the general torsional tensor Rρ
σµν (denoted henceforth as the T tensor):

T ρ
σµν := −Γρ

λσT
λ
µν . (17.9)

Note carefully that the T tensor is different from the conventional torsion tensor
used in Cartan geometry [2]:

T λ
µν = Γλ

µν − Γλ
νµ. (17.10)

The T tensor is one of the terms that premultiplies V σ in Eq.(17.7) while the
conventional torsion tensor (17.10) premultiplies ∂λV

ρ in Eq. (17.6). There are
two other terms present in Eq.(17.7) which are incorrectly omitted by Carroll
[2]. These terms, which premultiply ∂νV

σ and ∂µV
σ , also have a fundamental

physical significance in relativity theory but will be considered in future work.
The S, T and R tensors are by definition all antisymmetric in their last two
indices µ and ν, but in general are asymmetric in their first two indices ρ and
σ. The conventional Riemann tensor is antisymmetric in its first two indices ρ
and σ because of the torsion free condition used in deriving it [2] . The same
torsion free condition means that the conventional Ricci and metric tensors [2]
are symmetric. More generally they are asymmetric [3]– [25] and in general there
is no unique Ricci type tensor definable from the S tensor by index contraction.
Therefore the conventional Einstein Hilbert field equation is a special case of
many possible field equations of relativity and unified field theory [3]– [25].

Due to the antisymmetry in µ and ν the S tensor obeys the identities:

Sρσµν + Sρµνσ + Sρνσµ := 0 (17.11)

and
DλSρσµν +DρSσλµν +DσSλρµν := 0 (17.12)

which are generalizations of the first and second Bianchi identities obeyed by
the conventional Riemann tensor. The Bianchi identities are examples of the
Jacobi identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] =

ABC −BCA −ACB + CBA

+BCA− CAB −BAC +ACB

+ CAB −ABC − CBA+BAC

:= 0.

(17.13)

The second Bianchi identity is most generally a relation between covariant
derivatives:

[[Dλ, Dρ] , Dσ ] + [[Dρ, Dσ] , Dλ] + [[Dσ, Dλ] , Dρ] := 0 (17.14)
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CHAPTER 17. THE ROLE OF GRAVITATIONAL TORSION IN . . .

and this is true for any connection. As first shown by Feynman (17.29) the
Jacobi identity can be derived by a round trip of covariant derivatives around a
cube. In the condensed notation of differential geometry [2]– [25] the identities
(17.11) and (17.12) become:

Sa
b ∧ qb := 0 (17.15)

D ∧ Sa
b := 0 (17.16)

where qb is the tetrad form and where D∧ is the covariant exterior derivative
of differential geometry.

17.3 Field Equation For The S Tensor

The well known historical route to the Einstein Hilbert field equation is adhered
to in this section, but the end result is more general, because it considers non-
zero torsion. The first step is to define the S tensor with lowered indices:

Sρσµν = gρλS
λ
σµν (17.17)

No assumptions are made concerning the symmetry of the metric tensor gρλ.
In general it is a tensor with symmetric and asymmetric components. This can
be seen using differential geometry, in which the symmetric metric is the dot
product of two tetrads:

gµν = qa
µq

b
νηab (17.18)

where ηab is the Minkowski metric. The asymmetric metric is the wedge product
of two tetrads:

gc
µν = −gc

νµ = qa
µ ∧ qb

ν (17.19)

and for each index c is an antisymmetric tensor of the base manifold, Q.E.D.
The most general metric is the outer or tensor product of two tetrads:

qab
µν = qa

µq
b
ν . (17.20)

and for index do ab is an asymmetric tensor of the base manifold, Q.E.D. There-
fore the symmetric metric is a special case (the symmetric part) of the most
general metric formed form the tensor or outer product of two tetrads. Since
tetrads are always mixed index tensors [2]– [25], a dot, wedge and tensor prod-
uct of two tetrads may always be defined, and so the asymmetric metric may
always be defined in the n dimensional manifold using the principles of standard
differential geometry. The asymmetric metric gµν in Riemann geometry is thus
A defined for a given index ab of the tangent space to the n dimensional base
manifold at point P. This tangent space always exists but was not considered in
Riemann geometry (which predated differential geometry by many years). This
appears to be the root cause of the incorrect assertion sometimes made that the
metric must always be a symmetric tensor. Therefore, as in Eq. (17.17) it is
always possible to define the S tensor with lowered indices using a metric of any
symmetry. It is understood that Eq. (17.17) applies in the base manifold for
each ab index of the tangent spacetime in general.

185



17.3. FIELD EQUATION FOR THE S TENSOR

Now make a double index contraction on the identity (17.12):

gνσgµλ (DλSρσµν +DρSσλµν +DσSλρµν) := 0 (17.21)

and define:

DµSρµ := −
(
gµλDλ

)
(gνσSρσµν) (17.22)

DνSρν := − (gνσDσ)
(
gµλSσλµν

)
(17.23)

DρS := Dρ

(
gνσgµλSσλµν

)
. (17.24)

The sign difference convention comes from the antisymmetry of the S tensor in
µ and ν. This convention, used by Einstein in 1915, is defined as follows. If
indices are in the same order in the metric and in the tensor multiplied by the
metric, then the resulting sign is positive. If indices are in the opposite order in
the tensor to the index order in the metric, then the sign is negative. Adhering
to this convention then:

DµSρµ −DρS +DνSρν := 0 (17.25)

i.e.

DµSρµ − 1

2
DρS := 0 (17.26)

or

Sρν =
1

4
Sgρν . (17.27)

Finally use:

Dρ = gρµD
µ (17.28)

to obtain:

Dµ

(
Sρµ − 1

2
Sgρµ

)
:= 0. (17.29)

The field equation is obtained by the equation:

Dµ

(
Sρµ − 1

2
Sgρµ

)
= kDµTρµ (17.30)

where k is the Einstein constant, and Tρµ is a more general canonical energy-
momentum tensor than used by Einstein and Hilbert. Here Tρµ contains angular
or torsional energy momentum as well as energy momentum defined by curvature
as in the original Einstein Hilbert field equation. Therefore the field equation
of the S tensor is:

Sρµ − 1

2
Sgρµ = kTρµ. (17.31)
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17.4 Discussion

By carefully considering the convention for defining the Ricci tensor from the
Riemann tensor, it is possible to factorise Eq.(17.31) into the Einstein Hilbert
field equation and a new field equation for torsion. The Ricci tensor is defined
(17.30) conventionally by contracting indices of the Riemann tensor with the
symmetric metric:

Rκρ = gµλRµκρλ. (17.32)

The order of the indices is the same in the metric and the Riemann tensor.
The conventional Ricci tensor is a symmetric tensor because of the following
property of the Riemann tensor:

Rρσµν = Rµνρσ = Rνµσρ. (17.33)

Note that Eq. (17.33) is true if and only if the Christoffel connection is sym-
metric, i.e. if there is no torsion present. More generally the Ricci tensor is
asymmetric in the presence of torsion. In the absence or in the presence of
torsion the following property is true of the R tensor:

Rρσµν = −Rρσνµ (17.34)

but this becomes the Riemann tensor if and only if torsion is absent. Therefore
the following property is always true of the Ricci tensor contracted from the R
tensor:

Rρµ = gσνRρσνµ = gνσRρσνµ = −gνσRρσµν . (17.35)

In the absence of torsion the Riemann tensor is antisymmetric in its first two
indices as well as in its last two indices. This implies the property:

Rµνρσ = Rνµσρ. (17.36)

The scalar curvature formed by double contraction of the Riemann tensor is
therefore always positive in the absence of torsion:

R = gσνgλµRσλµν . (17.37)

These are the conventions and properties that lead to the 1915 Einstein Hilbert
field equation.

In the presence of torsion however, the Riemann tensor is no longer anti-
symmetric in its first two indices, and the Ricci tensor is no longer a symmetric
tensor. The Einstein Hilbert field equation also depends on the use of a symmet-
ric metric in the index contraction that leads from the second Bianchi identity
of Riemann geometry. Every asymmetric tensor is the sum of an antisymmetric
and symmetric component, so it is always possible to write:

Sµν = S(S)
µν + S(A)

µν (17.38)

Tµν = T (S)
µν + T (A)

µν . (17.39)
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17.4. DISCUSSION

If the symmetric part of the metric is used in the index contraction procedure
then:

gµν = g(S)
µν . (17.40)

The conventional and symmetric Ricci tensor used in the 1915 Einstein Hilbert
field equation is defined by:

Rµν = Rνµ = S(S)
µν . (17.41)

Under these conditions, Eq. (17.31) splits into a symmetric part, which is the
1915 Einstein Hilbert field equation:

Rµν − 1

2
Rgµν = kTµν (17.42)

and an antisymmetric part:
S(A)

µν = kT (A)
µν (17.43)

which is a new torsional field equation, containing new physics, notably consid-

erations of angular energy / momentum from T
(A)

µν .

The S
(A)

µν tensor is defined from:

S(A)
ρσµν = −gρτΓτ

λσT
λ
µν (17.44)

so that
S(A)

ρµ = gνσgρκΓτ
λσ

(
Γλ

µν − Γλ
νµ

)
. (17.45)

The S
(A)

ρµ tensor is therefore proportional to the torsion form used in Cartan
differential geometry:

S(A)
ρµ = gµσgρτΓτ

λσq
λ
aT

a
µν (17.46)

Eddington type experiments test only the Einstein Hilbert field equation of
1915, and do not consider torsion at all. In this paper we have deduced a
torsional equation (17.43) but in so doing have restricted consideration to the
symmetric metric. More general considerations require the use of the tetrad and
the Palatini variation of general relativity. The Einstein Hilbert field equation
is replaced by the more fundamental:

R = −kT (17.47)

as described in detail in refs. [3] to [25]. In this way the mutual influence of
gravitation and electromagnetism may be investigated using the asymmetric
connection in differential geometry using the tetrad as the fundamental field
rather than the metric as in the Einstein Hilbert variation of general relativity.
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