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ABSTRACT 

It is shown that the lagrangian and hamiltonian m theories are rigorously self 

consistent if and only if the plane polar frame of reference is ( \\ , f ), where r ·, is defin~d 
as rIm ( r) \/'a , where m ( r) is the function that defines the infinitesimal line element of 

the most general spherically symmetric spacetime. In this frame the lagrangian used in recent 

papers is rigorously derivable form the hamiltonian theory that gives the Evans Eckardt 

equations of motion. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 41 } the _lagrangian formulation of m theory has 

been used to derive several original and important results such as the possibility of 

superluminal motion, infinite energy from m space, forward and retrograde orbit precession, 

shrinking orbits, the possibility of expanding orbits, an explanation of the orbit of the S2 star 

as a non Kepler Newton ellipse, light deflection due to gravitation and several more major 

discoveries. The hamiltonian formalism of m theory has been used to derive the Evans 

Eckardt equations of motion. In Section 2 it is shown that the lagrangian and hamiltonian 

formalisms are rigorously equivalent if and only if the correct frame of reference is used. This 

is the frame of reference of the most general spherically symmetric spacetime in any 

coordinate system. If this frame is not used, rigorous self consistency is lost. 

This paper is a short synopsis of detailed calculations given in the notes 

accompanying UFT424 on www.aias.us. Note 424(1) is a derivation ofthe lagrangian from 

the hamiltonian in the usual flat space plane polar coordinate system ( f , r ). The resulting 

lagrangian is not consistent with that used in preceding papers. Note 424(2) is a review of the 

geodesic method used in UFT416 to derive the hamiltonian ofm theory used to define the 

Evans Eckardt equations of motion of classical dynamics. This geodesic procedure checks 

that the hamiltonian of m theory is rigorously correct. Note 424(3) shows that the 

inconsistency in Note 424(1) is resolved by using the correct frame of reference- that of the 

most general spherically symmetric spacetime. It follows that the development of the subject 

of classical dynamics in the most general spherically symmetric spacetime will lead to many 

original and major advances in understanding 

2. THE SELF CONSISTENT HAMILTONIAN AND LAGRANGIAN. 

Consider the plane polar coordinates in the most general spherical spacetime: 



where: 

and where m ( (\ ) is defined by the infinitesimal line element of the most general 

spherically symmetric spacetime: 
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As shown in immediately preceding papers the hamiltonian in this coordinate system is: 
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From the fundamentals of Lagrangian dynamics { 1 - 41 } : 
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The magnitude ofthe relativistic momentum is: 
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From Eqs. ( \ 5 ) and ( \\ ) : 
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where: 
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is the total relativistic energy in m space as shown by the geodesic method of Note 424(2). 

The lagrangian in ( ("" \ , r ) corresponding to the hamiltonian ( 4- ) is 

therefore: 
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which is the lagrangian used in immediately preceding UFT papers, Q.E.D. 

The hamiltonian and lagrangian formulations of m theory are rigorously equivalent if 

and only if the coordinate system of the most general spherically symmetric space is used. 



Otherwise, as shown in Note 424(1) self consistency is lost. The lagrangian ( d.~) produces 

the correct relativistic momentum: 

J'-1\ 
in frame ( \I 1 f) but this is not true in frame ( r I f ). The entire subject of 

classical dynamics must be redeveloped in frame ( \1 
1 
f). The Evans Eckardt equations 

must always be developed in frame ( \ 1 1 
f ) with the hamiltonian ( l;- ) and the 

angular momentum ( 5 ). The latter is found from: 

The magnitude of linear velocity in m space must be defined by Eq. ( ~ ) in order that the 

lagrangian and hamiltonian formulations be equivalent. The lagrangian of m theory must 

always be defined in frame ( \\ , f ) and is: 
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The Euler Lagrange equations must be: 
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3. SOME GRAPHICAL RESULTS FOR DIFFERENT m FUNCTIONS 

(Section by Dr. Horst Eckardt) 
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3 Additional computations and graphical results

3.1 Constraints for angular momentum

The Hamiltonian and Lagrangian method give different results in space (r, φ).
For the Hamiltonian method, we obtain the results already discussed in UFT
420. The results are quite complicated due to the additional terms in the La-
grangian (22). In particular the angular momentum (being the constant of
motion) contains an additional term:

L = γmr2φ̇+ (m(r) − 1)γ3mr2φ̇. (28)

The first term is the regular one, the second is an extension due to m(r) which
disappears for m(r)=1. In order to reconcile the equations of motion of both
spaces (r, φ) and (r1, φ), we have to use the constraint equation (19) of note
424(3):

∂L

∂φ̇
=

γ

m(r)
mr2φ̇. (29)

Since the partial derivative of φ̇ has to be taken, we respect only occurrences of
φ̇ in the Lagrangian directly, without indirect dependencies. Then the left hand
side of Eq. (29) gives exactly the above result (28) for the angular momentum.
This is equated with the ”expected” relativistic angular momentum at the right
hand side of (29). Then the equation

γm φ̇ r2
(
γ2 m(r) − γ2 + 1

)
=

γ

m(r)
mr2 φ̇ (30)

results which has two solutions for m(r):

m1(r) = − 1

γ2
, (31)

m2(r) = 1. (32)
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The second solution means the case of special relativity where the Hamiltonian
and Lagrangian method give identical results. The first solution is negative and
may or may not describe a special physical situation. Both the Hamiltonian
and Lagrangian method should also give identical results in this case.

The current calculation resolves the problem of constraints which could not
be specified precisely in preceding papers.

3.2 Equations of motion in coordinate system (r1, φ)

We computed the (r1, φ) equations of motion from the Hamiltonian and La-
grangian method. The equations coincide as expected. They are significantly
simpler than in the (r, φ) coordinate system and had already been derived in
UFT 416, Eqs. (60, 61), in that case as Euler-Lagrange equations only.

The equations of motion based on the Hamiltonian have been derived from

dH

dt
= 0,

dL

dt
= 0 (33)

with the Hamiltonian in the rest system

H = m(r1)γ mc2 − mMG

r1
(34)

and angular momentum in Z direction

L = γ mr1
2 φ̇. (35)

The generalized Lorentz factor γ is defined in this case by

γ =

(
m(r1) − ṙ1

2 + r1
2φ̇2

c2

)−1/2

. (36)

The equations of motion obtained by computer algebra from (33) are

φ̈ =φ̇ ṙ1

(
1

m(r1)

(
d

dr1
m (r1) +

GM

γ c2 r12

)
− 2

r1

)
,

r̈1 =

(
d

dr1
m (r1)

)(
c2
(

1

2
− 1

γ2 m (r1)

)
− φ̇2ṙ1

2

m (r1)

)

− GM φ̇2

γ c2 m (r1)
+ φ̇2 r1 −

GM

γ3 r12 m (r1)
.

(37)

(38)

The last term of φ̈ and the two last terms of r̈ are the non-relativistic expressions,
where the gravitational force has a factor of 1/γ3 as already observerd in UFT
415/416.

It is interesting to compare the differences of the calculational bases (r, φ) and
(r1, φ) in certain critical cases. We investigated an example of an event horizon
with collapsing orbits in UFT 416, Fig. 9. The example was computed with an
exponential m function in the (r, φ) system for the r orbit. The corresponding
r1 orbit then was derived a posteriori by

r1 =
r√

m(r)
. (39)
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This gives the orbits graphed in Fig. 1 which is a copy of Fig. 9 of UFT 416.
The r orbit ends at the horizon while the derived coordinate r1 diverges. In
the current paper we used the (r1, φ) system as a computational basis, solving
equations (37, 38) numerically, with the same m function and parameters as
used for Fig. 1. Afterwards the coordinate trajectory r was computed by

r = r1
√

m(r1). (40)

The result is graphed in Fig. 2. Now the primary coordinate r1 ends at the
horizon while the derived coordinate r ends in the gravitational centre. Obvi-
ously the m function “transforms away” the singularity at the event horizon,
shifting it to the centre. This would mean that an external observer would not
see the horizon at all, in contrast to the results in the (r, φ) system. Obviously
there are intricate differences in both bases of observation.
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Figure 1: Collapsing orbits outside of event horizon, coordinate system (r, φ).

Figure 2: Collapsing orbits outside of event horizon, coordinate system (r1, φ).
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