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ABSTRACT

The most general type of orbit theory is developed in spherically symmetric

spacetime. This theory is developed from the fact that the relativistic hamiltonian (H) and

relativistic angular momentum (L) are constants of motion. The coordinate system is defined

for the general orbit and the equations of motion solved numerically. The resulting orbits

precess and in general can decrease, so that a particle m orbiting a particle M eventually

collides with~..,This theory can describe all observable orbits without the use of the Einstein

field equation.
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1. INTRODUCTION 

In immediately preceding papers of this series { 1 - 41 } an ECE2 covariant 

theory of orbits has been developed with the aim of describing precession and orbit shrinking 

without the incorrect Einstein field equation. The latter fails experimentally in S star systems 

by an order of magnitude and has been refuted in nearly a hundred different ways in the ECE 

and ECE2 theories. In Section 2 a rigorously self consistent coordinate system is defined and 

used to define the lagrangian and hamiltonian. This is the only coordinate system that is 

rigorously self consistent. The hamiltonian and angular momentum in this coordinate system 

are rigorously self consistent constants of motion, and this property is used to construct a 

powerful and simple new cosmology in which orbits can in general both precess and shrink, 

as observed for example in binary pulsars. The new cosmology can describeS star systems, in 

which Einsteinian general relativity (EGR) fails by an order of magnitude. S star systems 

entirely refute the claimed precision of EGR and indeed refute the entire twentieth century 

thought in gravitational physics. In Section 3 an extensive numerical and graphical analysis is 

given of the first results from this new cosmology. 

This paper is a short synopsis of extensive calculations in the notes accompanying 

UFT416 on www.aias.us and www.upitec.org. Note 416(1) gives a short review of the 

properties of the most general spherically symmetric line elements and metrics, and gives the 

equations of motion ofUFT415 using the plane polar coordinate system ( r, t ). Note 

416(2) develops the rigorously self consistent coordinate system used to produce the orbits of 

Section 3. This coordirute system is the one defined by the most general spherically 

symmetric spacetime and must always be used. Note 416(3) double check~ Note 416(2) using 

the geodesic method. 



2. RIGOROUSLY SELF CONSISTENT THEORY 

Consider the plane polar coordinate system ( \\ , 

In this system of coordinates the infinitesimal line element of spherically symmetric 

spacetime is: 

J. ). 'l 
t.l~ -=- ( ~\: -=. 

in which the Newtonian velocity vis defined by: 
") ) 

"').A") -=- U,1 
t ,, 4 · 

The free particle kinetic lagrangian { 1 - 41} is: ) 

l ~ .L ~~-C: .,._ l ~ ( ~ \' 
1, ~ ki) 

where ~~is the metric and: 

is the. 

Therefore: 



The Hamilton principle of least action is: 

r Jr J..-c -=- o 

and the Euler Lagrange equation is: 
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From the Euler Lagrange equation: 
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where the total relativistic kinetic energy E of th f . . e ree particle IS 
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and from Eq. ( \5 ) is a constant of motion of a free particle. The hamiltonian of an 

interacting particle of mass m is therefore: 

Note carefully that in the curved m space the potential energy of interaction between 

m and Min an orbit is: u-
HereM is the mass ofthe particle about which m orbits, and G is Newton's constant. The 

hamiltonian is a constant of motion in general: 

ti_}\ - 0 

tU 
The Euler Lagrange equation: J! 
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g1ves: 
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where 

~\ 

p is the conserved linear momentum of a free particle in the most general spherically 
I 



symmetric spacetime. By definition: 

~\ -(~ 

as in UFT415, so the coordinate system and theory is rigorously self consistent_ Q.E.D. 

gives: 

where: 

Finally the Euler Lagrange equation: 

~ d! 
-lli~ 

-

l 
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is the conserved angular momentum in the most general spherically symmetric spacetime. 

This is the same angular momentum as in UFT415, but the plane polar coordinate system 

( { 1 4') does not give the correct linear momentum derived from fundamental kinematic 

considerations as in UFT415. The equations of motion of the new cosmology are therefore: 

D - ()1) 

and 

d\_ 0 -
Finally use: 
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and cl\_ D - (?>~ --o1 
These are integrated numerically in Section 3 to give any observable orbit. The 

numerical method checks that H and L are rigorously conserved, so the numerical and 

analytical techniques are correct and Hand L are rigorously conserved, Q. E. D. 

The orbital lagrangian in ( \1 , f ) is ~ 
__ VI--G"l ( ~ ((} _ ~ ~ • 5:_,)'') + rd'n; ~[!>!) 

J c ( . ) ) . '))~ q~ t tkrn ~-
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and has the well known fundamental property: 

The linear momentum from Eq. ( ) is: 

J! 
~~\ 

and is the same as the result obtained in UFT 415 from the fundamental definition of the 

position vector r in the most general spherically symmetric space: -, 
\ 
-\ 

• 



The conserved angular momentum from Eq. ( ~~)is: "' • 
'J.. 'i el 
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which is the same as the result from the geodesic method, Eq. ( dJ, ), Q.E.D. 

Furthermore, from Eqs. ( 3S) and ( ~~ ): 

\... 

which is the same result again for the conserved angular momentum, giving a triple cross 

check on the angular momentum. 

The Leibniz equation in the most general spherically symmetric space is: 

• - ( ~C\) 

L e. : 

~ ( Jfi, 
and • 

a )~f -____. 

ctt ,.,._ ( '() ll ~ 



These are integrated as simultaneous equations giving a vast amount of new 

information about any observable orbit. A small sample of such information is presented in 

Section 3. 

3. SOME RESULTS FROM EQS. ( 4-J. ) AND ( ~3 ). 
Section by Dr. Horst Eckardt. 
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3 Some results from Eqs. (42) and (43)

3.1 Euler-Lagrange equations

We first present the equations of motion based on m space in extension of
the computer algebra work of UFT 415. The velocity of an orbiting object in
observer space is

v = ṙ2 + r2φ̇2 (44)

and the radial coordinate and velocity in m space are

r1 =
r√

m(r)
, (45)

v1 =
v√

m(r)
. (46)

In addition, the time is transformed inversely to r:

t1 =
√

m(r) t. (47)

As worked out in section 2, the potential energy is

Epot = −
√

m(r)
mMG

r
(48)

and the total relativistic energy is

E = (m(r) γ − 1) mc2 −
√

m(r)
mMG

r
= const (49)

with the γ factor of non-constant, spherically symmetric spacetime:

γ =

(
m(r)− v21

c2

)−1/2

=

(
m(r)− ṙ2 + r2φ̇2

m(r) c2

)−1/2

. (50)

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de

1



The conserverd angular momentum is

L = γ mr21 φ̇ =
γ

m(r)
mr2 φ̇ = const. (51)

The equations of motion are derived as Euler-Lagrange equations from the rel-
ativistic Lagrangian

L = −mc
2

γ
+
√

m(r)
mMG

r
. (52)

The Euler-Lagrange equations in normalized form are obtained from the ana-
lytical calculation by computer algebra:

φ̈ =φ̇ ṙ

(
d
dr m(r)

m(r)

(
2− GM

2γ c2 r
√

m(r)

)
+

GM

γ c2 r2
√

m(r)
− 2

r

)
, (53)

r̈ =

(
d

dr
m(r)

)(
c2 m(r) +

GM

2γ3r
√

m(r)
− 3c2

2γ2

)

−
d
dr m(r)

m(r)
φ̇2r21

(
2− GM

2γc2r
√

m(r)

)
− GM φ̇2

γ c2
√

m(r)

+ φ̇2r −
GM

√
m(r)

γ3 r2
.

(54)

The m function is to be predefined as a parameter of calculation. The equations
and their results are very similar to the temporary version provided in UFT 415.
Numerical examples are discussed in the next subsection.

Instead of executing the calculations in observer space (r, φ), we can com-
pletely switch to the m space coordinates (r1, φ). With (45-47), all r-dependent
quantities are transformed to r1-dependent quantities, giving

Epot = −mMG

r1
(55)

E = (m1(r) γ − 1) mc2 − mMG

r1
(56)

γ =

(
m(r)− v21

c2

)−1/2

=

(
m(r)− ṙ21 + r21φ̇

2

c2

)−1/2

(57)

L = γ mr21 φ̇ (58)

and the relativistic Lagrangian reads

L = −mc
2

γ
+
mMG

r1
. (59)

Since thisv Lagrangian is simpler structured than for the observer coordinate
system (Eq.(52)), the resulting Euler-Lagrange equations are simpler:

φ̈ =φ̇ ṙ1

(
1

m(r1)

(
d

dr1
m (r1) +

GM

γc2 r12

)
− 2

r1

)
, (60)
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r̈1 =

(
d

dr1
m (r1)

)(
c2
(

1

2
− 1

γ2 m (r1)

)
− φ̇2ṙ21

m (r1)

)

− GM φ̇2

γ c2 m (r1)
+ φ̇2 r1 −

GM

γ3 r12 m (r1)
.

(61)

The last term of φ̈ and the two last terms of r̈ are the non-relativistic expressions,
where the gravitational potential has a factor of 1/γ3 as already observerd in
UFT 415. In addition, the m function appears in both last terms.

3.2 Results of numerical calculations

The simultaneous equation set (53, 54) has been solved numerically. The results
are essentially similar to those presented in UFT 415. In Fig. 1 the orbits r(φ)
and r1(φ) are graphed for a mass colliding with the centre where the m function
of the extended Schwarzschild metric was used:

m(r) = 1− 2MG

c2r
− α

r2
. (62)

The r1 orbit is slightly larger than the r orbit because m(1)=0.94 for the initial
point r=1. When the r orbit collapses, m(r) goes to zero, letting r1 go to
infinity. The mass is repelled from the centre in the (r1, φ) frame but falls into
the centre in the observer frame (r, φ). As explained in UFT 415, the motion
ends where m(r)=0.

In the subsequent calculations the exponential m function was used because
it is not based on Einsteinian general relativity. Fig. 2 shows the counterpart
of Fig. 1 calculated with the exponential m function

m(r) = a− exp
(
b exp(− r

R
)
)
. (63)

The orbit spirals inwards for the r as well as the r1 trajectories. Their time
dependence is graphed in Fig. 3 and their velocity behaviour in Fig. 4. The
velocities first rise when the orbiting mass comes near to the centre but then
drop down sharply. The value v goes to zero, indicating that the orbiting mass
comes to rest in the observer frame, but the velocity v1 remains final in the
frame (r1, φ).

The relativistic angular momentum (Fig. 5) for the same motion remains
constant until r approaches zero where the calculation diverges. The Newtonian
values go to zero before this point because v = 0 and, consequently, φ̇ = 0 at
this point. The relativistic and Newtonian total energy are graphed in Fig.
6. In the Newtonian case the kinetic energy vanishes at the end point r =
0 and the potential energy diverges. As a consequence, the Newtonian total
energy diverges to −∞. In the relativistic case the divergence of the 1/r term is
counteracted by the γ factor and the m function, as can be seen for example in
the last term of Eq. (54). Therefore the total energy does not behave singular
in this case.

In the following we investigate effects of an event horizon. It is not clear if
such an entity exists in nature but from m theory such a structure is possible.
We have introduced a zero point in m(r) at r0 = 0.3 as shown in Fig. 7. The
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m function then reads

m(r) = a− exp

(
b exp(±r − r0

R
)

)
(64)

where the plus sign holds for r < r0 and the minus sign for r > r0. We first
consider the outer space r > r0. If the mass orbits at sufficient distance from
the event horizon at r0, we obtain, in the periodic case, the precessing ellipses
and curves oscillating between two radii. Such a case is graphed in Fig. 8. If
the initial velocity of the calculation goes below a certain value, the mass stops
at the event horizon and stays there, see Fig. 9. The r1 orbit diverges similarly
to the case of Fig. 1. The reason may be that the m function (62) implicitly
contains an event horizon, called the Schwarzschild radius.

The periodic motion of a mass within the horizon is graphed in Fig. 10.
This is a precessing motion as long as the mass does not come too near to the
event horizon. It is seen that the orbits r and r1 become different in the outer
region where they are nearer to the horizon. This is inverse to motion with a
central m function (see for example Fig. 2). When the initial velocity exceeds
a certain value, the mass is caught by the event horizon, leading to an end of
motion. This case is graphed in Fig. 11. Interestingly, the r1 orbit crosses the
horizon and pertains infinitely but the r orbit ends at r = r0. Obviously an
event horizon is an insurmountable limit. This is different from obsolete black
hole theory where a mass can freely fall through the event horizon.

The last calculations were done with the equation set (60, 61) which describes
the motion a priori in (r1, φ) space. Fig. 12 shows an orbit with forward
precession. Since the orbit has always a larger distance to the centre, there is
no visible difference between the r and r1 trajectories. When the initial velocity
is chosen smaller, i.e. the total energy is smaller in amount, we obtain retrograde
precession, see Fig. 13 (observe the different length scales of both diagrams).
Finally in Fig. 14 it is proven that also for the equation set (60, 61) the total
energy is conserved, as is the angular momentum.
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Figure 1: Orbits with Schwarzschild-like m function (62).

Figure 2: Orbits with exponential m function (63).
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Figure 3: Trajectories r(t) and r1(t).

Figure 4: Trajectories v(t) and v1(t).
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Figure 5: Angular momenta of motion.

Figure 6: Total energy of motion.
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Figure 7: m function with event horizon at r = 0.3.

Figure 8: Periodic orbits outside of event horizon.
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Figure 9: Collapsing orbits outside of event horizon.

Figure 10: Periodic orbits inside event horizon.
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Figure 11: Collapsing orbits inside event horizon.

Figure 12: Orbit of equation set (60, 61) with forward precession.
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Figure 13: Orbit of equation set (60, 61) with retrograde precession.

Figure 14: Total energy of motion with retrograde precession.
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