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ABSTRACT 

The tensorial Taylor series is defined in detail, and applied to compute the effect 

ofvacuum fluctuations on various laws of physics. The tensor Taylor series applies to 

scalars, and in consequence a scalar potential of any kind can be used directly. The effect of 

the vacuum on a vector field of force is computed through the scalar components. The Lamb 

shift is an example of the method when the scalar potential is the Coulomb potential, and 

where the vacuum fluctuations take effect at second order in the Taylor series. The vacuum 

affects the Newtonian inverse square law at fourth and sixth orders of the Taylor series. The 

whole of physics can be developed for vacuum effects using this method. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 41} the effect of vacuum fluctuations on 

material matter has been investigated using a development of the well known theory of the 

Lamb shift, in which isotropically averaged vacuum fluctuations are considered. The method 

is applied in Section 2 to the Coulomb potential, the Newtonian inverse square law and the 

dipole magnetic flux density. A new and generally applicable law of physics is inferred. 

Physics as it is currently understood is a theory that is developed in the hypothetical absence 

ofthe vacuum. However, what is actually observed experimentally in any part of physics 

always includes the influence of the vacuum, which must therefore always be taken into 

account. For example, the Schroedinger or Dirac theories of atomic hydrogen are theories 

developed in the absence of any consideration of the vacuum, and result in the energy 

degeneracy of the 2S and 2P states. The vacuum lifts this energy degeneracy giving the well 

known Lamb shift. The fully developed theory must include the effect of the vacuum. 

Similarly, Newtonian universal gravitation is a theory developed in the absence 

of any consideration of the vacuum. In this theory the inverse square law of gravitational 

attraction of m and M results in a conic section orbit of m about M, notably the elliptical 

orbit. However, what is actually observed is a precessing ellipse, and the precession must be 

due to the effect ofthe vacuum (also known as the aether or spacetime). In section 2 it is 

shown that after isotropic averaging the vacuum affects the inverse square law at fourth, sixth 

and higher orders in the tensor Taylor series. Therefore the vacuum must produce orbital 

precession, because the latter is what is observed experimentally as is well known. Finally, 

the effect of the vacuum on the magnetic dipole potential and field is considered. The theory 

in the absence of the vacuum gives a well known fine and hyperfine spectral structure, which 

must therefore be changed by the vacuum in an experimen_tally measurable way. 

In all these theories the vector spin connection of ECE2 can be computed. 



This paper (UFT397) is a short synopsis of detailed calculations in the notes 

accompanying UFT397 on www.aias.us and www.upitec.org. The notes must be read with 

the paper. Note 397(1) (labelled 396(1) for historical reasons, but attached to UFT397) gives 

a detailed description of the meaning ofthe tensorial Taylor series, a very powerful and 

fundamental method. Note 397(2) applies the tensor Taylor series to the Coulomb law to give 

the Lamb shift. This note is a baseline note that defines the way in which the theory must be 

developed in other areas of physics. Note 397(3) applies the theory to Newtonian universal 

gravitation, Note 397(4) applies it to the magnetic dipole potential and field, and Note 397(5) 

gives numerical calculations. 

Section 3 is a description of the computational methods used, notably the 

methods used in isotropic averaging. The tensor Taylor expansion rapidly becomes intricates 

ins structure, so the computer is needed at an early stage. 

2. TENSOR TAYLOR SERIES AND APPLICATIONS 

Consider the effect of a vacuum fluctuation on any scalar function 

in which there is summation over repeated indices . Therefore the first term is 
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where: 
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it is possible to proceed to the evaluation of higher order terms with the help of computer 

algebra, and then to apply isotropic averaging. 

The result is a general and powerful method of calculating the effect of the vacuum 

on any scalar function f. 

The clearest way to apply isotropic averaging is to use the Cartesian component 

results: 

It follows that: 

and: l"l) 

( ~~ ? -
\ --
~'. 

This is a very useful and important result because the effect of the vacuum on any scalar 

function f can be calculated by finding < ~ ( • £ i_ ') for the vacuum. Iff is the 

Coulomb potential, Eq. ( \~)gives a precise explanation of the Lamb shift as is well 

known, so there can be great confidence in applying this method to the rest of physics. 
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The meaning ofthe condensed notation ( I ) is by no means clear, and tensor . 
notation as in Eq. ( '1. ) is not used by anyone but a minority of physicists. The clearest 

+ . - - - -

and this can be developed with computer algebra to eliminate human error. This is carried out 

in Section 3. 

Iff is the Coulomb potential: 

between the electron and proton in the H atom, the Lamb shift may be calculated with great 

accuracy, by using the Dirac delta function S9(~as follows: 

q) l ~) ~ -411 S:\){0. -(l>) 

It follows from Eq. ( \ CS ) that: 
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where 1 is the relevant wave function of atomic H. The wave functiotf of the 

Schroedinger theory are used as discussed further in Note 397(5). So the well known 

Schroedinger H atom is the theory in the absence of the vacuum. 

Third order terms of the tensor Taylor series vanish upon isotropic averaging, but at fourth 

The usual theory of the Lamb shift uses: 



is the Compton wavelength of the electron. In the H atom: - ( :lS) 
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where Q. 6 is the Bohr radius: -h 
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So the degeneracy of 2S and 2P is removed by the vacuum, giving a result that can be 

measured experimentally with great precision. Note 397(5) puts numbers on these formulae, 

to show that the Lamb shift is a small but measurable effect: (. ~ 
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The above is a famous radiative correction for the effect of the vacuum. The 

Schroedinger or Dirac H atom are theories worked out in the hypothetical absence of the 

vacuum. The vacuum however, is ubiquitous and never absent. The subject of physics in its 

present state of development is worked out in the hypothetical absence of the vacuum. 

Consider for example the Hooke I Newton inverse square law of gravitational 



attraction between masses m and M: 

Here G is Newton's constant. The law seems to have been first inferred by Hooke and 

thereafter greatly developed by Newton. Eq. ( J C\ ) takes no account of the effect of the 

The isotropically averaged change in these components due to vacuum fluctuations 
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with similar expressions for~ l'j f .fynd { ~ f <.'> ·. 
The change in F due to the vacuum is therefore: 
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is the force of attraction with vacuum effects considered, the force between m and M with 

vacuum effects considered. As shown in Section 3 using computer algebra, there are no 

second order effects of the vacuum on the inverse square law ( ~<\),but terms to fourth and 

sixth order and higher order correct the inverse square law for the effect of the vacuum. So 

the elliptical orbit of Newton is changed by the vacuum. It is well known that the observed 

orbit is a precessing ellipse, so the vacuum must produce a precessing ellipse. The vacuum 

fluctuations after isotropic averaging must be such as to produce the precessing ellipse for 

any object in the universe. Other precessions must also be due to the vacuum, producing a 

completely new cosmology. 

In rigorous theory the force law ( ){, ) must produce the precessing orbit by 

modifying the well known Newtonian method. In order to see how precession can emerge, 

the results ofNote 377(4) can be used, in which the ECE2lagrangian: 

") ( • • 1/"l 1 - ~(_ \ - ~· ~ -\ 
c... 

-(n) 

when used with the Euler Lagrange equation: 

Jf 

gives the force law: 

... 



in which the relativistic momentum is 

-
and in which :{_

0 
is the Newtonian velocity. In UFT377 it was shown that Eq. ( )'\ ) 

gives a precessing orbit. 

In the solar system: 

so: 
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Comparing Eqs. ( ~b ) and ( '-+~): 
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will give a precessing orbit, Q. E. D. In the first instance the isotropically averaged 

fluctuations at fourth and sixth orders in the tensor Taylor expansion can be a~justed to give 

the experimentally observed precession. The theory can be refined by using Monte Carlo or 

molecular dynamics type computer simulations of the vacuum to compute the fluctuations, 

assuming that the vacuum is made up of vacuum particles as in previous UFT papers. 

Finally consider the effect of the vacuum on the well known magnetic vector 

potential: 

where r 
0 

is the vacuum permeability and m is the magnetic dipole moment. In this case 

the tensor Taylor series is applied to the three scalar components of A, for example the 
. -o 

Cartesian components. As shown in Section 3, the vacuum begins to affect the magnetic 



vector potential at order four in the Taylor expansion. There are no second order effects but 

there are higher order effects which can be observed experimentally with fine and hyperfine 

spectral structure. 

In the standard model of physics the magnetic flux density B is defined by: -~ 

t ~ '1 "' A - ( '-\-S) 
_o - -o 

but in ECE2 theory: o "')<...A() - -
where (,.) - is the vector spin connection which defines the vacuum flux density: 

So ECE2 theory automatically considers the vacuum correction: 

Cl~o ~ 2_ (-!~c) "- 2- - ~6 .- c~~ 
From vector analysis the complete dipole magnetic flux density is: 

to ~b('=>~·~ 
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and the complete correction in three dimensions is: 

(~~.) ~ (~t.x\ i_-\- (t1~•i'> i 
However, from Eq. ( 4-<6 ): 

so the isotropically averaged vacuum magnetic flux density is: 

and the spin connection vector can be found. 
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The vacuum effects show up as small shifts in spin spin fine and hyperfine 

structure, for example in ESR and NMR, so can be measured experimentally. 

3. NUMERICAL AND GRAPHICAL ANALYSIS 

Section by co author Horst Eckardt 



Tensor Taylor series method for vacuum effects

M. W. Evans∗, H. Eckardt†

Civil List, A.I.A.S. and UPITEC

(www.webarchive.org.uk, www.aias.us,
www.atomicprecision.com, www.upitec.org)

3 Numerical and graphical analysis

3.1 General formulas

The detailed Taylor series of a function of vector arguments was given in Eq.
(13). The isotropic averaging of ∆f(r) can be performed on this abstract level,
giving the 2nd order Taylor terms

〈∆f〉(2) =
〈δr · δr〉

6

(
d2

dX2
f +

d2

dY 2
f +

d2

dZ2
f

)
, (55)

the 4th order terms

〈∆f〉(4) =

〈
(δr · δr)2

〉
216

(
d4

dX4
f +

d4

dY 4
f +

d4

dZ4
f + 6

(
d4

dY 2dZ2
f +

d4

dX2dZ2
f +

d4

dX2dY 2
f

))
(56)

and the 6th order terms

〈∆f〉(6) =

〈
(δr · δr)3

〉
19440

(
d6

dX6
f +

d6

dY 6
f +

d6

dZ6
f (57)

+ 15

(
d6

dY 4dZ2
f +

d6

dY 2dZ4
f +

d6

dX4dZ2
f +

d6

dX4dY 2
f +

d6

dX2dZ4
f +

d6

dX2dY 4
f

)
+90

d6

dX2dY 2dZ2
f

)
.

In the following we consider some examples.

3.2 Vector potential of a magnetic dipole

The vector potential of a magnetic dipole has been given by Eq. (44). The vector
components of A0 experience vacuum corrections of fourth order onward. The
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X component in the first two non-vanishing orders is

〈∆AX〉(4) =
〈
(δr · δr)2

〉 35Y
(
3Z4 − 5Y 2 Z2 − 3X2 Z2 + Y 4 − 5X2 Y 2 + 3X4

)
18(X2 + Y 2 + Z2)

11
2

,

(58)

〈∆AX〉(6) =

〈
(δr · δr)3

〉
9(X2 + Y 2 + Z2)

15
2

· (59)

7X
(
8Z6 − 75Y 2 Z4 − 15X2 Z4 − 75Y 4 Z2 + 300X2 Y 2 Z2

−21X4Z2 + 8Y 6 − 15X2 Y 4 − 21X4 Y 2 + 2X6
)
.

The undistorted vector potential A0 has been graphed in Fig. 1 for constant

values of δr. The averaged vacuum terms 〈∆AX〉(4) and 〈∆AX〉(6) are plotted
in Figs. 2 and 3. According to their degree of approxmiation, they have a
high symmetry. There is a behaviour like a source field potential at the centre.
When both contributions are added to the total potential of Fig. 1, the result of
Fig. 4 emerges. In the central part the corrections due to vacuum fluctuations
dominate the structure, representing a multipole expansion of the vacuum terms.

3.3 Coulomb potential

The isotropically averaged, non-vanishing fluctuations of the normalized Coulomb
potential

U = − 1

(X2 + Y 2 + Z2)1/2
(60)

are

〈∆U〉(4) =
〈
(δr · δr)2

〉 7
(
Z4 − 3Y 2 Z2 − 3X2 Z2 + Y 4 − 3X2 Y 2 +X4

)
18(Z2 + Y 2 +X2)

9
2

(61)

and

〈U〉(6) =

〈
(δr · δr)3

〉
9(X2 + Y 2 + Z2)

15
2

· (62)

7X
(
2Z6 − 15Y 2 Z4 − 15X2 Z4 − 15Y 4 Z2 + 180X2 Y 2 Z2

−15X4 Z2 + 2Y 6 − 15X2 Y 4 − 15X4 Y 2 + 2X6
)
.

These are formally similar to those of the vector potential components. Both
contributions are graphed in Fig. 5 together with the Coulomb potential (in
X direction). The fourth-order fluctuation is repulsive, while the sixth-order
fluctuation is attractive like the original potential. All components together
(Fig. 6) give a correction to the potential which leads to a steeper descent near
to the central charge.

3.4 Gravitational force

The normalized gravitational force (identical to Coulomb force)

F = − r

(X2 + Y 2 + Z2)3/2
(63)
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leads to the non-vanishing Taylor series fluctuations (X component)

〈∆FX〉(4) =
〈
(δr · δr)2

〉 35X
(
3Z4 − 3Y 2 Z2 − 5X2 Z2 + 3Y 4 − 5X2 Y 2 +X4

)
18(Z2 + Y 2 +X2)

11
2

(64)

and

〈∆FX〉(6) =

〈
(δr · δr)3

〉
9(X2 + Y 2 + Z2)

15
2

· (65)

7X
(
8Z6 − 75Y 2 Z4 − 15X2 Z4 − 75Y 4 Z2 + 300X2 Y 2 Z2

−21X4 Z2 + 8Y 6 − 15X2 Y 4 − 21X4 Y 2 + 2X6
)
.

The fluctuations (Fig. 7) are similar in sign to those of the potential, but the
force field (Fig. 8) has a pronounced saddle. Also in this case the vacuum
fluctuations effect a broadening of the central region, like an effective central
mass with extended radius, not a point mass.

As stated in section 2, relativistic corrections to Newton’s force law (42) can
be expanded for small velocities v0 to a second-order correction in v0/c:

∆F ≈ 3

2

v20
c2
mMG

r3
r. (66)

This term has to be equal to the Taylor expansion of ∆F whose first two non-
vanishing terms are given by Eqs. (64, 65). Correctly, one has to use

−mMG

r3
r

(
1− v20

c2

)3/2

= −mMG

r3
r + 〈∆F〉(4) + 〈∆F〉(6) + ... (67)

The exponential term at the left hand side can be expressed by Newton’s gen-
eralized binomial theorem:(

1− v20
c2

)3/2

= 1 +
7v0

12

1024c12
+

3v0
10

256c10
+

3v0
8

128c8
+

v0
6

16c6
+

3v0
4

8c4
− 3v0

2

2c2
+ . . . .

(68)

Using the terms of lowest order at the left hand side, we have

−mMG

r3
r

(
1− 3

2

v20
c2

+
3

8

v40
c4

+
1

16

v60
c6

+ ...

)
= 〈∆F〉(4) + 〈∆F〉(6) + ...

(69)

The right hand side gives a dependence on δr · δr so that in principle it is
possible to compute the size of fluctuations δr from the orbit. Please note
that the result depends on the orbital velocity v0 which is given by the orbital
relation v0(r). This relation is known if the orbital dynamics is known, for
example from a Lagrange solution of (42). Resolving Eq. (69) for δr gives a
polynomial of degree 6 in the case above. There is a real-valued solution for
(δr)2 but the terms are such complicated that this method of determining δr
cannot be handled even by computer algebra with reasonable effort.
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Figure 1: Undistorted vector potential A0 of a magnetic dipole field.

Figure 2: fluctuations of 4th order of the magnetic vector potential.
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Figure 3: fluctuations of 6th order of the magnetic vector potential.

Figure 4: Total magnetic vector potential with fluctuation terms.
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Figure 5: Coulomb potential and 4th order and 6th order fluctuations.

Figure 6: Total Coulomb potential with fluctuations.

6



Figure 7: Gravitational force and 4th order and 6th order fluctuations.

Figure 8: Total gravitational force with fluctuations.
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