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ABSTRACT 

The complete set of anti symmetry laws of ECE2 electrodynamics are solved 

together with the field equations. Conservation of antisymmetry is a fundamental law of 

physics, one which is violated by the standard model. The ECE wave equation completes the 

set of available equations. 
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1. INTRODUCTION 

In recent papers of this series, { 1 - 12}, c5mservation of anti symmetry has been 

proven rigorously for ECE2 electrostatics and magnetostatics. In this paper, the law of 

conservation of antisymmetry is proven for ECE2 electrodynamics. In section 2, the trace 

antisymmetry law is introduced and the ECE wave equation used to complete the set of 

available equations, the antisymmetry equations and the field equations. In Section 3 some of 

the structure of spacetime (or vacuum or aether) is mapped through the use of the spin 

connection four vector. 

This paper is a short synopsis of the notes accompanying UFT388 on 

wvvw.aias.us and vvww.upitec.org (combined sites). Notes 388(1) and 388(2) give details ofa 

method in which the material or circuit is assumed to be approximately free of the vacuum. 

Note 388(2) gives the complete set of equations. Note 388(4) develops the trace antisymmetry 

equation, or Lindstrom constraint, first given in UFT354 and UFT366 (volume two of"The 

Principles of"ECE"). Section 2 is based on Notes 388(4) and 388(6). 

2. THE SET OF ANTISYMMETRY EQUATIONS. 

The complete set of available equations includes the ECE wave equation { 1 - 12}: 
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where R is a scalar curvature and A the vector potential of ECE theory: r 
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~ is the Cartan tetrad and A proportionality constant. For each index a: 
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Here J is the four current density and M is the vacuum permeability. Eq. ( 3> ) 
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implies that: 

and 

where + is the scalar potential,~s the vector potential, r is the charge density :!_is 

the current density and C0 the vacuum permittivity. 

Note carefully that the wave equation is derived without use of the Lorenz 

condition , and that R is well defined geometrically { 1 - 12}. It is also important to note that a 

material or circuit is always influenced by the vacuum, so all quantities in ECE2 

electrodynamics are always influenced by the vacuum. This influence is evident in the well 

known radiative corrections such as the electron g factor and the Lamb shift { 1 - 12}. 

As described in immediately preceding papers the electric and magnetic 

antisymmetry equations are: 
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where E is the electric field strength, B the magnetic flux density and where: -
( 

w. C>) -,-
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is the spin connection four-vector. The spin connection maps the structure of the vacuum and 

is not defined in the standard model (the Maxwell Heaviside (MH) theory). The trace 

antisymmetry equation or Lindstrom constraint is: 

and shows that the covariant derivatives of the scalar and vector potentials are the same. 

As shown in Note 388(4), the Lindstrom constraint is derived from the tetrad 

postulate { 1 - 12} 

r \s 
where . , the mixed index gamma connection, related to the Christoffel connection, where 

~ I 

is the Cartan spin connection and <\j 10 is the Cartan tetrad. By antisymmetry: 

I.,_ - (t~.t\ I ·J 
From Note 379(5) on www.aias.us: 
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For each index a it follows that: 
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Since ~"' is antisymmetric by definition, its trace vanishes: 

ro. T rn +- r~J. t- r J~ -=- o (n) 
using the ECE postulate ( ~ ): 

where: 
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Eq. ( \ ~ ) follows, Q.E.D. 

Note carefully that the empirical Lorenz condition is not used in the derivation of 

Eq. ( \~ ). This is an advantage because the Lorenz condition is an arbitrary or empirical 

construct of the standard model, used without proof. 

The well known ECE2 field equations: 

must be used together with the antisymmetry constraints and ECE field equation. Note 



carefully that the MH theory does not conserve anti symmetry { 1 - 12}, and is thereby refuted 

and obsolete, ,and that there are several new fundamental laws of physics in the ECE2 

electrodynamics. This is significant progress in understanding. 

From Eqs. ( ) and ( 

--- -
_... 

and from Eqs. ( ":::> ) and ( 

--

Eqs. ( :lt ) and ( )1 ) appear superficially to have the same format as the MH theo;, 

but E and B are defined in a completely different way on the ECE2 level. The latter is - -
developed in a space with finite torsion and curvature, MH is developed in Minkowski space, 

in which torsion and curvature are not defined. 

It is recommended that the following computational and graphical procedures be 

used. However, many other procedures are possible. 

1) Measure ( an~ experimentally in a material or circuit. Find f and~ from Eqs. (~) 

and ( ~l ) by numerical integration. 

2) Knowing~ the spin connection vector '"' - is found by solving Eqs. ( ) to 

\0 ) as in immediately preceding papers. 

3) Knowing.::. ~and f , E is found from Eq. ( ), and B is found from Eq. -
( ). 

Another procedure is as follows: 

1) Measure!.._ and B in a material or circuit. 

2) Find f and + from Eq. ( ~ ). 
3) Find A and J from eq. ( 'l\ ). --



4) Find ~ from Eqs. ( ~ ) to ( '0 ) . . 
The homogeneous field equations ( l:l ) a.I}d ( )3 ) must be obeyed. From 

Eqs. ( l ) and ( ~ ) this implies that: 

<J • CJ Jl-.A - 0. -(o.-9 -- -
Defining: 

'\J 'i- A, Cl~A - cd_~ ·-.- --
then Eq. ( ~~ ) is obeyed by vector algebra: 
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and it follows that: 
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where the total vector potential is: 
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Furthermore, define: 
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From Eqs. ( ) \ ) and ( "~ ) it follows that: 
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Q.E.D. 
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From Eq. ( ~l ): 

\ 

From Eqs. ( ~,; ) and ( 

Jt 
so:_( ~can be found using (.) o ofEq. ( 2>'0 ). 

FromEq ( 3>~( t.t..t) -=- - ~ f Jt +- A :1 ~ (~) 
~~ 

whereRs a constant of inte~~o:no:er Acto(~;~) + f 61 ~. -( ~ \) 
So the entire set of equations can be solved, Q. E. D. They are all fundamental laws of 



physics. and rigorously conserve antisymmetry. The Maxwell Heaviside field equations do 

not conserve antisymmetry, so the standard model is refuted and replaced by ECE2 

electrodynamics. 

3. MAPPING THE VACUUM 

Section by co author Horst Eckardt 
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3 Mapping the vacuum

We investigate two kinds of electromagnetic waves as examples for time-dependent
electrodynamic problems. The associated vacuum structure is investigated.

3.1 Circularly polarized plane wave

We start with circularly polarized plane waves with three polarization directions,
inducing the B(3) field, which is a vacuum field in direction of propagation. The
B(3) field is defined by

B(3)∗ = − iκ

A(0)
A×A∗ (42)

with complex vector potential A and constants κ and A(0). There are three
polarization directions of A with

A×A∗ = A(1) ×A(2) (43)

and

A(3) = 0. (44)

From this definition follows the B cyclic theorem:

B(1) ×B(2) = iB(0) ×B(3)∗, (45)

B(3) ×B(1) = iB(0) ×B(2)∗, (46)

B(2) ×B(3) = iB(0) ×B(1)∗. (47)
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The vector potential is defined by

A(1) =
A(0)

√
2

exp (i(ωtt− κZ))

 1
−i
0

 , (48)

A(2) =
A(0)

√
2

exp (−i(ωtt− κZ))

1
i
0

 (49)

with time frequency ωt and wave number κZ . From Eq. (42) follows:

B(3)∗ =

 0
0

κA(0)

 . (50)

Because of Eq. (43) we can proceed with one complex-valued potential A. The
spin connection obeying the magnetic antisymmetry equations (8-10) then is

ω =

 κZ√
2

exp(i(ωtt− κZZ))

−iκZ√
2

exp(i(ωtt− κZZ))

iκZ

 . (51)

This means that the vacuum is structured similar to the vector potential, in
form of plane waves. In the following we discern the physically acting fields

E1 = −∂A
∂t

, (52)

B1 = ∇×A (53)

and the vacuum fields

E2 = −ω0A, (54)

B2 = −ω ×A. (55)

The total fields then are, according to ECE2 theory,

E = E1 + E2, (56)

B = B1 + B2. (57)

From Eqs. (48), (49) and (51) follows that the corresponding fields are

E1 =
A(0)

√
2
ωt exp(−i(ωtt− κZZ))

 i
−1
0

 (58)

E2 =
A(0)

√
2
ω0 exp(−i(ωtt− κZZ))

−1
−i
0

 (59)

B1 =
A(0)

√
2
κZ exp(−i(ωtt− κZZ))

1
i
0

 (60)

B2 = A(0)κZ

− 1√
2

exp(−i(ωtt− κZZ))

−i 1√
2

exp(−i(ωtt− κZZ))

−i

 (61)
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The total magnetic field

B = ∇×A− ω ×A =

 0
0

−iA(0)κZ

 (62)

only has a imaginary Z component. The X and Y components of ∇ ×A and
ω × A are different from zero but cancel out. This could be the reason why
Nicola Tesla mainly relied on electric fields in his transmission experiments. The
electric total field does not cancel out and includes vacuum interaction while
the total magnetic field is a null field.

The total electric field of the plane waves is

E =
A(0)

√
2

exp(−i(ωtt− κZZ))

 iωt − ω0

−(ωt + iω0)
0

 . (63)

It makes sense to identify ω0 with the time frequency ωt so that

E =
A(0)

√
2
ωt exp(−i(ωtt− κZZ))

 i− 1
−(i+ 1)

0

 . (64)

In order to inspect the vacuum effects, we test the field equations for the phys-
ically effective and vacuum fields separately. For the physically effective fields
we obtain

∇ ·B1 = 0 (65)

∇×E1 +
∂B1

∂t
= 0 (66)

∇ ·E1 = 0 (67)

∇×B1 −
1

c2
∂E1

∂t
= 0 (68)

i.e. there are no charge and current densities for electromagnetic waves as ex-
pected. For this result we had to assume the ordinary vacuum relation between
time frequency, wave number and propagation velocity c:

ωt = c κZ . (69)

For the vacuum fields, however, we obtain

∇ ·B2 = 0 (70)

∇×E2 +
∂B2

∂t
= µ0 Jm2 (71)

∇ ·E2 = 0 (72)

∇×B2 −
1

c2
∂E2

∂t
= µ0 J2 (73)
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with

µ0 Jm2 =
A(0)

√
2
ωtκZ exp(−i(ωtt− κZZ))

 i− 1
−(i+ 1)

0

 , (74)

µ0 J2 =
A(0)

c2
√

2
exp(−i(ωtt− κZZ))

−(i ω2
t + c2κ2Z)

ω2
t − i c2κ2Z

0

 . (75)

There is a vacuum current J2 and even an magnetic vacuum current Jm2. These
are not acting visibly in electromagnetic waves.

From the trace antisymmetry equation (12) follows

(∇− ω) ·A = −A(0)κZ (76)

meaning that there is a type of scalar potential present. A constant potential
φ = φ0 is a possible solution, giving

φ0 =
A(0)c2 κZ

ωt
. (77)

The real parts of all field vectors are graphed in Figs. 1-3 for unity parame-
ters (except c = 5) and t = 0. In Fig. 1 the physically acting fields are plotted.
E1 and B1 are rotating with a phase shift of 90◦ as is well known for circularly
polarized waves. A and ω are both parallel to B1. The vacuum fields E2 and
B2 are parallel and antiparallel to A as can be seen from Fig. 2. In Fig. 3
we have graphed the vacuum currents. These are nearly perpendicular to one
another but are phase shifted both to a 45◦ axis compared to E and B. This
vacuum structure of electromagnetic waves was completely unknown before.

3.2 Circularly polarized wave with radial localization

A second example is a modified (real-valued) plane wave, with a radially decay
inversely to the radius r =

√
X2 + Y 2:

A =


A0r0 cos (ωtt−kZZ)√

X2+Y 2

A0r0 sin (ωtt−kZZ)√
X2+Y 2

A3

 (78)

where r0 is a scaling constant. A has a non-vanishing constant Z component
A3. This is required to guarantee solutions of the magnetic antisymmetry equa-
tions (8-10). From the results it can be seen that setting A3 = 0 would lead to
zero denominators for example in ω. Therefore this component is required. The
expressions for E1,2, B1,2 and ω are computed as for the first example. They
are complicated and not listed here. Some of their components are graphed.
It is plausible that the 1/r dependence leads to source terms ∇ · A etc. The
Lindstrom constraint requires a complicated scalar potential φ. There are vac-
uum currents as well as physically effective currents. The E and B fields are
also radially decaying in Z direction although this behaviour is not present in
A, reminding of a wave packet in three dimensions.

Fig. 4 shows a vector map of the A field in the XY plane, taken at Z = 1 (all
constants set to unity). The nature of a plane wave would reveal parallel vectors
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Figure 1: Plane wave, red: E1 field, green: A, B1 and ω fields.

all over the plane but due to the spatial 1/r decay the modulus of the vectors
decreases with the distance from coordinate origin. The fields E1, E2 and B1

look similar with rotated vector orientation. E1 and B1 are perpendicular as
for pure plane waves. However the spin connection shows an asymmetry (Fig.
5), whose details depend on the height Z. So spacetime is not symmetric to the
physically effective fields here. This structure persists in B2 because it depends
on ω. The field B2 is graphed in Fig. 6, revealing a kind of rotational structure.
The Z component of ω is mapped in Fig. 7. A two-fold symmetry is visible.
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Figure 2: Plane wave, red: E2 and B2 field, green: A field.

Figure 3: Plane wave, red: electric vacuum current J2, green: magnetic vacuum
current Jm2.
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Figure 4: Localized plane wave, A field at Z = 1.

Figure 5: Localized plane wave, ω field at Z = 1.
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Figure 6: Localized plane wave, B2 field at Z = 1.

Figure 7: Localized plane wave, map of spin connection component ωZ at Z = 1.
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