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ABSTRACT 

A general theory of orbits is developed by using a combination of the orbital, or 

force equation, and the field and potential equations of ECE2 gravitation. The lagrangian and 

hamiltonian formulations are implemented to produce both forward and retrograde 

precessions, a property unique to ECE2 relativity. The initial conditions for the computation 

of the orbit are introduced through the kappa vector of ECE2 relativity, and the theory of zero 

and counter gravitation (UFT318 and UFT319) merged with orbital theory. 
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1. INTRODUCTION 

In immediately preceding papers of this series { 1 - 12} it has been shown that the 

ECE2 lagrangian produces both forward and retrograde precessions, a property unique to 

ECE2 relativity. Retrograde precessions do not occur in Einsteinian general relativity (EGR) 

but are thought to be observable in S2 star systems. In Section 2 the force or orbital equation 

is used together with the field and potential equations (UFT318 and UFT319) relevant to 

gravitostatics, in which there is no gravitomagnetic field. The result is a general theory of 

orbits which can be merged with the theory of zero and counter gravitation. 

This paper is a short synopsis of notes accompanying UFT378 on www.aias.us 

and www.upitec.org (referred to as "combined sites"). Note 378(1) is a derivation of a 

general relation between the kappa vector and the acceleration due to gravity using two 

relevant field equations. Note 378(2) develops the field equations in Cartesian components, 

Note 378(3) introduces the concept of initial conditions being determined by the kappa 

vector, which models the background spacetime or aether. Note 387(4) introduces the 

hamiltonian into the theory, and Note 378(5) introduces the field potential equations ofECE2 

gravitation first developed in UFT318 and UFT319. 

2. THEORETICAL DEVELOPMENT 

In immediately preceding papers it has been shown that the ECE2 lagrangian 

produces both forward and retrograde precessions, and so is preferred experimentally to EGR. 

The acceleration due to gravity in the forward precession is: 
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where is the Lorentz factor and r the position vector joining a mass m orbiting a mass -
M. Here G is the Newton constant. The acceleration due to gravity in the retrograde 

precessiOn 1s: 
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Both Eqs. ( ~ ) and ( ~ ) are derivable from the same ECE2 lagrangian: 
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in a space with finite torsion and curvature { l - 12}. 

The relevant gravitostatic field equations are: 
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where \1( is the kappa vector of the ECE2 field equations of gravitation (UFT318 and -
UFT319). Eq. ( S ) means that \.< - is parallel to g and: 
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has the units of linear velocity. It follows that: 
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For example, for a planar orbit in the non relativistic limit: 
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which is the result fond in UFT3 77 by another method. 
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Note 378(2) gives more examples ofthis method using Cartesian components for 

forward and retrograde precessions using the structure of the kappa vector: 

-
where q is the tetrad vector and - the spin com1ection vector. -

In generaL the field equations show that: 
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an equation which can be used as an initial condition for the numerical solution of Eqs. ( l ) 

and ( ~ ). The final orbit will depend on \'j.. ( 0 and V\.-1 & ) and can be "aether 



engineered" by choice of initial conditions. For retrograde precession and for the non 

relativistic orbit: 
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For forward precession: 

c:_ __,/ 

_ (tLJ 

\<. "1- ( ,; "- :;,_ & ) ":. 
YzA6J -i (0 

as described further in Note 378(3). 

Note 3 78( 4) introduces a constant of motion, the hamiltonian, which gives further 

information about the orbit. The non relativistic hamiltonian is: 
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a result that can be used to check that the numerical solution gives a constant H self 

consistently. Using the results: 
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so the initial velocity can be expressed as: 
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OI bit a come section, notably the ellipse.defined by th .c . e 10rce equatwns: 
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Retrograde precession is defined by: 
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and the hamiltonian: 

The Lorentz factor is defined by: 
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where ...J o is the Newtonian velocity { 1 - 12}. From Eq. ( 'lL ) the Lorentz factor is: 
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and retrograde precession becomes more and more pronounced as: 

1. e. as: 
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Note carefully that the ECE2 theory of light deflection due to gravitation { 1 - 12} 

imposes an upper bound: 

In the non Newtonian limit the initial velocity is maximized with: 
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under which condition very large precessions can be aether engineered. 

The ECE2 field potential equations of gravitation were first given in UFT318 and 

UFT319: 
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where 'f and C( are the gravitational scalar and vector potentials respectively. Here: -



is the gravitational potential energy in joules. The spin connection four vector is: 

and 
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By the ECE antisymmetry law: 
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In the Newtonian theory there is no gravitational vector potential: 
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so the force equation is: 
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is the Newtonian gravitational potential. As in Note 378(5) the spin com1ection is: 
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with Cartesian components: 
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Using the Cartesian components of the kappa vector: __ y 

the tetrad vector components can be found: 
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for a Newtonian orbit. 

For a non Newtonian orbit, for example a precessing orbit: 
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where p can be interpreted as an aether momentum. So the orbital equations become: 
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By assuming a pm1icular solution ofEq. ( .3>'\ 
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Eqs. ( 50 ), ( S \ ), ( 5 ~ ) and ( 5lt- ) are four equations in four unknowns: X, 

Y. Xcu~nd Y ~ . and any non Newtonian orbit can be found for a given W o . 

The condition for zero gravitation is: 
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and counter gravitation occurs when p in Eq. ( \ '\ ) is negative, so the force F can be --
aether engineered to be positive. In this case two gravitating masses m and M repel. 
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3 Computational results and graphics

We start this section with deriving expressions for ∇ · g. The equations of
motion are for the non-relativistic case:

r̈ = −M G

r3
r, (56)

for forward precession (Euler-Lagrange equation):

r̈ =
M G

γ r3

(
ṙ (ṙ · r)

c2
− r

)
, (57)

and for retrograde precession:

r̈ = −M G

γ3 r3
r, (58)

each with

r =
(
X2 + Y 2

)1/2
. (59)

By computer algebra we obtain for the non-relativistic case:

∇ · g =
M G

r3
, (60)

for forward precession:

∇ · g =
M G

γr3

Ẋ2Y 2 +X2 Ẏ 2 − 2
(
Y 2 Ẏ 2 +X2 Ẋ2

)
− 6XY ẊẎ

c2 r2
+ 1

 ,

(61)
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and for retrograde precession:

∇ · g =
M G

γ3r3
. (62)

According to Eq. (4), these terms correspond to the charge density ρM . Obvi-
ously the structure of the equations of motion (56-58) is reflected in the charge
density. The case for retrograde precession differs from the non-relativistic case
only by a factor of 1/γ3, while more terms of order 1/c2 appear in the case of
forward precession.

As a second point we have investigated the orbits resulting from different
initial conditions defined by the κ vector of ECE2 relativity. In two-dimensional
calculations we have to define four initial values, ordinarily X(0), Y (0), Ẋ(0),
Ẏ (0). Alternatively, when using the κ values, these are κX(0), κY (0), κ̇X(0),
κ̇Y (0). These values have to be transformed to the ordinary initial values to
start the calculation. Instead of using the derivatives of κ, we prefer using the
constants of motion H (total energy) and L (angular momentum). Therefore
we have to derive the ordinary values from κX(0), κY (0), H, L. Using the non-
relativistic versions, we have

H =
mv2

2
− mMG√

X2 + Y 2
(63)

and

L = m (XvY − Y vX) . (64)

These equations are transformed to their κ-dependent forms by:

X = − κX
κ2X + κ2Y

, (65)

Y = − κY
κ2X + κ2Y

. (66)

However we have also to transform the velocity components. Therefore we
proceed as follows. From (64) we obtain

vX =
mX vY − L

mY
(67)

and from (63)

v2X + v2Y =
2MG√
X2 + Y 2

+
2H

m
. (68)

These are two non-linear equations to express vX , vY in dependence of X,Y and
constants of motion. We obtain two sets of solutions, differing in sign:

vX = ±
X
√

2m2MG
√
X2 + Y 2 + 2mH(X2 + Y 2)− L2

m (X2 + Y 2)
− LY

m (X2 + Y 2)
,

(69)

vY = ±
Y
√

2m2MG
√
X2 + Y 2 + 2mH(X2 + Y 2)− L2

m (X2 + Y 2)
+

LX

m (X2 + Y 2)
.

(70)
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H L κX(0) κY (0) X(0) Y (0) vX(0) vY (0)
-1 0.5 0 -1.1716 0 0.8535 -0.5858 -0.006194
-1 0.5 0 -2.3 0 0.4348 -1.15 -1.1303
-1 0.5 0 -3.9 0 0.2564 -1.95 -1.4133
-0.5 1 0 -1 0 1 -1 0
-0.75 0.75 0 -1.5 0 0.6667 -1.125 -0.4841
-1 0.5 0 -2 0 0.5 -1 -1

Table 1: Initial values of model calculations (non-relativistic/relativistic).

Choosing the negative sign in both equations and inserting (65,66), we obtain
two complicated expressions for vX(κX , κY ) and vY (κX , κY ). Thus we can
define initial conditions for H, L, κX , κY and obtain initial values X(0), Y (0),
vX(0), vY (0) which enter the numerical integration of the orbit. The values
used are listed in Table 1. The first three lines refer to the non-relativistic
calculation whose orbits are shown in Fig. 1. Choosing different κY ’s, while all
other parameters remain fixed, means rotation of the ellipse. The relativistic
calculation for retrograde precession requires different total energy and angular
momentum, if precession is to be varied (last three lines in Table 1). From
Fig. 2 can be seen that the orbits shrink in the order blue-red-green. Higher
precession requires higher velocities which can be seen from the data in Table 1.

As a result we noticed that when using total energy and angular momentum
as parameters for the initial conditions, it is easy to find an orbit of the wished
kind of conic section (here an ellipse). From earlier calculations with specifying
the input parameters X(0), Y (0), vX(0), vY (0) directly, it was not clear from the
beginning which type of orbit would appear, and we had to make several tries
to get the desired orbit.
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Figure 1: Non-relativistic orbits for different initial values κY , with κX = 0.

Figure 2: Relativistic orbits (retrograde precession) for different initial values
H, L, κY , with κX = 0.
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