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ABSTRACT 

It is shown that the ECE2 covariant lagrangian gives both forward and retrograde 

precessions, whereas Einsteinian general relativity (EGR) produces only forward precessions. 

The relevant force equation is the relativistic Newton force equation. This is combined with 

the ECE2 covariant gravitational field equations for gravitostatics to give a precisely self 

consistent theory and to define the relevant spin connections. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 12}, the theory of precession has been 

developed with various force equations and lagrangians. In this paper it is shown that the 

ECE2 covariant lagrangian can give both forward and retrograde precession, depending on 

how it is solved. The retrograde precession is given by the ECE2 lagrangian corresponding to 

the relativistic Newton force law and a vector Euler Lagrange equation,. and the forward 

precession by the use of the same lagrangian and two scalar Euler Lagrange equations. The 

solution is combined with the ECE2 field equations to calculate the relativistic spin 

com1ections uniquely. The spin connections are determined completely by the orbit. 

This paper is a short synopsis of detailed calculations in the background notes 

posted with UFT377 on combined sites www.aias.us and www.upitec.org. In note 377(1), 

the orbital equation is defined using the relativistic Newton law. In Note 377(2) the spin 

connection vector is introduced and retrograde precession discussed. Note 377(3) gives a 

summary of calculations. Notes 377(4) to 377(7) show that the forward and retrograde 

precessions can be the same if and only if the orbit is the Newtonian ellipse and if and only if 

the precessions vanish. Note 377(8) uses the gravitostatic limit of the field equations ofECE2 

together with the force equation to define the relevant spin connections uniquely. 

2. FORWARD AND RETROGRADE PRECESSION FROM THE SAME LAGRANGIAN 

Consider the ECE2 lagrangian in the Cartesian format { 1 - 12}: 
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The potential energy is: 

This lagrangian is a description of a mass m orbiting a mass M in a plane, a distance r apart. 

The proper Lagrange variables are X andY, and there are two Euler Lagrange equations: 
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They are developed with computer algebra as in Section 3 to give: 
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These equations are integrated by computer algebra as discussed in Section 3. They give an 
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orbit in which forward precession occurs in a plane. This is precession in the same direction 

as the motion of m around M. For an initial condition of: 

the precession is 

Now consider the same lagrangian ( 1.. ) written as: 
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The proper Lagrange variable is r and the Euler Lagrange equation is: 
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is the Newtonian or non-relativistic velocity: 
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It can be shown as in Note 377(1) that: 
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so the Euler Lagrange equation ( \~ ) becomes: 
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This is the orbital equation with the relativistic Newtonian force: 

As shown in Note 377(1) this force is consistent with the Einstein energy equation: 

The Cartesian component equations ofEq. ( \~ ) are: 
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These are integrated by computer algebra in Section 3 and give a negative or retrograde 

precession of: 

for an initial condition of the S2 star system { 1 ·_ 12} of: 
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The experimentally observed precession for the S2 star system is between 

_ (J. 0\1 and 0 . 0 ~ S radians. The theoretical results are: 
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from Eqs. ( l ) and ( ~ ), and from Eq. ( \3 ) respectively. Therefore the theoretical 

results are in the middle of the experimental range. Einsteinian general relativity (EGR) can 

give only forward precession, so ECE2 relativity is prefe1Ted to EGR in yet another way. 

During the course of development of ECE2, the EGR has been refuted in at least eighty three 

ways ("Eighty Tlu·ee Refutations ofEGR" on v.rww.aias.us). 

In the non relativistic limit: 

the lagrangian ( i ) becomes: 
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and the Euler Lagrange equations ( 5 ) and ( 6 ) give an elliptical orbit via the 

equations: 
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In the same non relativistic limit, the non relativistic lagrangian can be written as: 
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and the Euler Lagrange equation ( \5 ): 
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gives an, elliptical orbit via: 
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which is the vector form of Eqs. ( :l <'\) and ( 30 ). 

The vector lagrangian is the same as the scalar lagrangian because: 
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The scalar Euler Lagrange equations are the two components of the vector Euler 

Lagrange equation. The remarkable conclusion is reached that the same lagrangian can give 

forward and retrograde precession, depending on the method of solution. 

As described in Notes 377(4) to 377(7), if it is assumed that: 
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This result is given by the equation of an ellipse: 
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where a and b are the semi major and semi minor axes. So the forward and retrograde 

precessions are the same if an only if they are both identically zero, when there is no 

precession and when the orbit is an ellipse. In generaL two entirely different precession 

phenomena are given by the same ECE2 lagrangian. The correct method and correct sign of 

thetrecession must be found by comparison with experimental data. For example in the S2 

system the precession is negative or retrograde. This cam1ot be described by EGR. 
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The spin connections for retrograde precession are found from the the force equation 

( ~ 3> ) and two ECE2 gravitational field equations { 1 - 12}: 
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in which \1( is related to the spin connection as described in UFT318 and in which ~ 
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is the mass density of the source of mass M. It follows from the gravitational Coulomb law 

( S 0 ) that: 
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(Note 377(8)). In the gravitostatic limit, the ECE2 Faraday law of induction becomes: 
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is a velocity to be defined. Using Eq. ( 5l ). the velocity is deduced to be: 
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for the retrograde precession, and can be found from the numerical solution that gives X and 

Y. These vector components of VC are plotted in Section 3. ---
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3 Discussion of numerical results and graphics

3.1 Four theories of relativistic motion

We give some refinement of the equations for forward and retrograde precession.
First we present the equations of four formulations of the relativistic equations
of motion derived from the relativistic Lagrangian (1).

3.1.1 Relativistic Lagrangian model with t

With the Lagrange variables X and Y the following equations of motion are
obtained from the Euler-Lagrange equations (5,6):

Ẍ = MG
ẊY Ẏ +X Ẋ2

γc2 (Y 2 +X2)
3/2
− MGX

γ(X2 + Y 2)
3/2

, (60)

Ÿ = MG
Ẏ X Ẋ + Y Ẏ 2

γc2 (X2 + Y 2)
3/2
− MGY

γ(X2 + Y 2)
3/2

. (61)

These can be combined in vector form as

r̈ =
M G

γ r3

(
ṙ (ṙ · r)

c2
− r

)
(62)

with

r =
(
X2 + Y 2

)1/2
. (63)
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3.1.2 Relativistic Lagrangian model with τ

In standard relativistic Lagrange theory the time derivative in the Euler-Lagrange
equations (5-6) is defined by the proper time τ :

∂L

∂X
=

d

dτ

∂L

∂Ẋ
, (64)

∂L

∂Y
=

d

dτ

∂L

∂Ẏ
. (65)

This leads to an additional factor of 1/γ in Eqs. (60, 61):

Ẍ = MG
ẊY Ẏ +X Ẋ2

γ2c2 (Y 2 +X2)
3/2
− MGX

γ2(X2 + Y 2)
3/2

, (66)

Ÿ = MG
Ẏ X Ẋ + Y Ẏ 2

γ2c2 (X2 + Y 2)
3/2
− MGY

γ2(X2 + Y 2)
3/2

, (67)

and in vector form:

r̈ =
M G

γ2 r3

(
ṙ (ṙ · r)

c2
− r

)
. (68)

3.1.3 Relativistic Newton equation

The relativistic Newton equation (21, 22), as derived in section 2 from the vector
form (18) of the Euler Lagrange equations, is:

r̈ = −M G

γ3 r3
r. (69)

Here a factor of γ3 appears in the denominator, and there is no additional
velocity dependence as in (62) and (68).

3.1.4 Minkowski force

The Minkowski force equations can be derived from Minkowski theory directly
and contains one more γ factor in the denominator:

r̈ = −M G

γ4 r3
r. (70)

3.1.5 Comparison of equations

All four equations have been solved numerically for the S2 star as described
in UFT 375 in detail. Our first focus is on the angular momentum. In both
Lagrange theories (62) and (68) the relativistic angular momentum is conserved
by construction (Figs. 1 and 2). For the relativistic Newton and Minkowski
force only the non-relativistic angular momentum is conserved (Figs. 3 and 4),
giving an inconsistent result. There is no simple explanation available since the
relativistic angular momentum was used in Eq. (14).

Precession is negative (or retrograde) for both the Minkowski and relativis-
tic Newton force. From Lagrange theory equations the precession is positive.
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T [yr] rmax [1014 m] ε ∆φ [rad] const. of
motion

Euler-Lagr. t 15.50 2.78609 0.88712 5.9033·10−4 Lrel

Euler-Lagr. τ 15.57 2.79440 0.88746 7.5090·10−7 Lrel

Rel. Newton 15.50 2.78621 0.88720 -1.7697·10−3 Lnon−rel

Minkowski 15.06 2.79452 0.88753 -2.3585·10−3 Lnon−rel

Experiment 15.56 2.68398 0.8831 -0.017. . .
+0.035

Table 1: Parameters of S2 star orbit (v0 = 7.7529648 · 106 m/s, various calcula-
tions and experiment).

However precession is extremely small in the τ version of Lagrangian theory.
It is barely above the numerical precision limit of 10−8 rad as determined in
UFT 375. There is also a logical problem for the Lagrange theory based on
proper time τ . All quantities are computed in the observer frame but the time
derivative of ∂L/∂ṙ is computed for the frame local to the orbiting mass. This
seems to be inconsistent. Therefore the Lagrange theory based on observer time
t seems to be the best choice for a consistent overall description of relativistic
effects. A comparison of all four theory variants is made in Table 1 for the
orbit of the S2 star. The differences in maximum radius and eccentricity are
marginal.

3.2 Spin connection vector

The spin connection vector κ can be computed from the solution of orbit tra-
jectories in several degrees of approximation. By Eq. (52) we have one equation
for both components κX and κY . Under the assumption that the κ’s vary only
slowly with time, we can take the time derivative of this equation as a second
equation, obtaining

κXX + κY Y = −1, (71)

κXẊ + κY Ẏ = 0. (72)

Solving these equation set, we obtain

κX =
Ẏ

Ẋ Y −X Ẏ
, (73)

κY = − Ẋ

Ẋ Y −X Ẏ
. (74)

We see that the κ’s nevertheless depend on time since this is the case for the
trajectories X(t), Y (t) and their derivatives. These trajectories are graphed in
Figs. 5 and 6 for the S2 star. Due to the high ellipticity of the orbit, there are
sharp peaks at periastron. The approximate solution (73, 74) is graphed in Fig.
7. There is high similarity to the derivatives Ẋ, Ẏ of Fig. 6, with interchange
of X and Y and the sign of one component.

Eq. (52) was derived from the Coulomb-like field equation (50). Instead of
taking an additional time derivative, we can use the static Ampere law (51). In
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two dimensions there is only a Z component of the curl operator, giving in total
the equation set

κXX + κY Y = −1, (75)

κXY − κYX = 0. (76)

This can be solved by computer algebra directly:

κX = − X

X2 + Y 2
, (77)

κY = − Y

X2 + Y 2
. (78)

The denominator is always positive now, leading to a smoother curve of the κ’s
except at periastron, see Fig. 8. This fact should give further serious concern
for Einsteinian general relativity where infinities (“black holes”) are built in
by construction. As we can see from these examples, in nature there are no
infinities, and improving the descriptional approach removes infinities. This
stage has never been reached by the Einsteinian theory.

Instead of solving the field equations (75, 76) for κ, we can alternatively
solve them for X,Y . This leads to

X = − κX
κX2 + κY 2

, (79)

Y = − κY
κX2 + κY 2

. (80)

Obviously the orbit is entirely determined by the spin connection, a completely
new result of relativistic gravitational physics. Spin connections and orbit coor-
dinates are mutually symmetric, showing some sort of symmetry, which perhaps
can be interpreted as a correspondence between configuration and momentum
space.

This offers the capability of investigating what happens when the spin con-
nections are slightly modified, a kind of spacetime or aether engineering. As an
example we modify the Y component of the spin connection vector by

κY → κY − t · 10−17. (81)

The Y component is continuously decreased. The result is a retrograde preces-
sion of the orbit as shown in Fig. 9. So any kind of precession can - besides
other methods - be evoked by aether engineering.
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Figure 1: Angular momentum, Euler-Lagrange equations with t.

Figure 2: Angular momentum, Euler-Lagrange equations with τ .
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Figure 3: Angular momentum, relativistic Newton Equation.

Figure 4: Angular momentum, Minkowski Equation.
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Figure 5: Orbital trajectories for S2 motion.

Figure 6: Orbital time derivative trajectories for S2 motion.

7



Figure 7: Spin connection components for approximation (73, 74).

Figure 8: Spin connection components for exact solution (77, 78).

8



Figure 9: Retrograde precessing orbit evoked by aether engineering (modified
spin connection).
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