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ABSTRACT 

The acceleration in the spherical polar coordinate system is shown to be an example 

of a Cartan covariant derivative with well defined spin connection. The Lagrangian analysis 

of various gyroscope motions is given in terms of sets of simultaneous differential equations 

which are solved with Maxima code to give complete solutions. The underlying geometry is 

always Cartan geometry. The problems solved in this way are 1) the gyroscope in a 

gravitational field; 2) the gyroscope with point attached to a stand; 3) the theory of spherical 

orbits; 4) the general theory of a gyroscope in an external force field; 5) the general theory of 

the Milankowitch cycles. 
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1. INTRODUCTION 

In this series of three hundred and sixty nine papers and books to date { 1 -12}, the 

ECE and ECE2 unified field theories are developed in terms of well known Cartan geometry 

{ 1 -12}. Therefore each papers an book is based on Cartan geometry, and the physics is 

developed as a variation of the central theme. In Section 2 the fundamental spherical polar 

coordinate system is shown to be an example of Cartan geometry with well defined spin 

connection. In general any curvilinear coordinate system is a variation on Cartan geometry, 

each coordinate system being defined by a spin connection. This new fundamental theorem is 

exemplified by applications to gyroscope motion of various kinds: 1) the gyroscope in a 

gravitational field; 2) the gyroscope attached to a stand; 3) the complete theory of spherical 

orbits; 4) the general theory of a gyroscope in an external force field; 5) the general theory of 

Milankovitch cycles. 

The paper is a short synopsis of extensive and detailed calculations contained in 

the background notes accompanying UFT369 on www.aias.us. Note 369(1) describes the 

theory of a gyroscope in a gravitational field; Note 369(2) is the theory of a weightless 

gyroscop; Notes 369(3) is a preliminary theory of Milankovitch cycles; Notes 369(4) to 

369(6) derive the spin connection ofthe spherical polar coordinate system and generalize the 

result to any curvilinear coordinate system; Note 369(7) gives a complete theory of spherical 

orbits; Note 369(8) gives the general theory of the gyroscope in an external field and Note 

369(9) gives a general theory of Milankovitch cycles. These theories are variations on the 

theme of gyroscope motion, and each problem is solved with sets of simultaneous differential 

equations in the relevant Lagrange variables. 

Section 2 is a short synopsis of the relevant Lagrangian analysis in each case. 

Section 3 solves the simultaneous differential equations and graphs the most important 



results. 

2. VARIATION ON THE THEME OF GYROSCOPE MOTION 

These variations are based on the relevant coordinate system, notably the spherical 

polar system. As in Note 369(4) it is shown to begin this section that spherical polar 

coordinate system is characterized by a well defined Cartan covariant derivative and spin 

connection matrix. The note begins by reviewing the derivation of the spin connection of the 

plane polar system, and proceeds to define the acceleration in the spherical polar system as 

the covariant Cartan derivative of the velocity. So all coordinate systems are examples of 

Cartan geometry. Consider the linear velocity { 1 - 12} in the spherical polar system: 
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three dimensions. The equivalent result in plane polar coordinates is: 
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in which the two by two matrix is the spin connection, rotation generator in a plane_ 

The linear velocity in spherical polar coordinates is: 
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In the plane polar system the dynamics ofthe unit vectors can be summarized as: 
• • 
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It is seen that the set of equations (\})to ( \"-)and ( \1 ) to ( \ ~ ) exhibit 



the same overall structure based on Cartan geometry. So the various gyroscope motions 

developed as follows are variations on the theme of Cartan geometry and general covariance 

in relativity theory. 

The first example considers as in Note 369(7) the spherical orbit of a mass m about 

a mass M in a central force field: 
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where :f}_ is the angular velocity in spherical polar coordinates an~ the linear velocity. It 

follows that: 

so: 
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which is the Leibniz equation for a three dimensional orbit. For the central force field ( d \ ): 
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where ~B and 0.. r are given by Eq. ( d._ ). The lagrangian for the spherical orbit is: ( ~ 
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which is Eq. ( )3 ), Q.E.D. 

Eqs. ( J.L ) and ( ). ~ ) give the angular momentum Lt as a constant of 

motion: 

and: 

Eqs. ( )J, ) and ( ). <(, ) give: 
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so as shown in Note 369(7) the complete solution for any spherical orbit is given by solving 

the following three simultaneous differential equations: 
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This is carried out in Section 3 wi~h Maxima code. In generaL all orbits are~~~ orbits. 

Notes 369(1) and 369(2) give complete details of the motion of a gyroscope in a 

gravitational field, using the Lagrangian method. Readers are referred to these notes for 

details. They develop the results ofUFT368. An important result is that the condition for 

and this theory supports the reproducible and repeatable result of Laithwaite described in 

UFT368. Under ce11ain well defined conditions the gyroscope can appear to be weightless. 

In Note 369(8) a general theory is given of a gyroscope in an external force field, 

The translational kinetic energy is given by: 
, # 

where r is the position in the lab frame of the centre of mass of the gyroscope of mass m. The -
rotational kinetic energy is defined in the frame ( 1, 2, 3) ·of the principal moments of inertia I\ 

. I~, and IJ ofthe gyroscope. Here c.>, , GJ) ~d GJ3 are the angular 

velocities in axes 1, 2, and 3. In general { 1 - 12} the potential energy is defined by: 
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in terms of the work done by the force F to transport the centre of mass of the gyroscope from -
point 1 to point 2. A solution ofEq. ( '+o ) is: 

-
corresponding to the external torque: 
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applied to the gyroscope. The potential energy, a scalar, is the same in the lab frame (X, Y, 

as in UFT368, where: 
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in which any kind of external force F can be defined in the laboratory frame (X, Y, Z). 

UFT368 solves the problem of a symmetric top gyroscope whose point is fixed, 

and whose lagrangian is: 

! 
in the notation ofUFT368. The gyroscope with a fixed point cannot translate, so: 
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If the point of the gyro is allowed to move, and an extrenal force applied, te lagrangian 

( \.t~ ) generalizes to: 
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The lagrange variables are \ e l j_;, and the dynamics of the gyroscope are 
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For a potential energy of type ( S "\ ) the translational motion of the centre of mass 

of the gyroscope is independent of its own rotational motion (nutations and precessions). 

However in the general case: 



the rotational and translational motions are inter related. 

Finally, Note 369(9) considers the general case of the Milankowitch cycles, which are 

thought of as being due to the nutations and precessions of the asymmetric top gyroscope of 

mass m in the gravitational field of the sun of mass M. The distance between the sun and the 

centre of mass ofthe gyroscope is r in the laboratory frame (X, Y, Z). The distance between 

the centre of mass and a point in the gyroscope is r \ in the same laboratory frame. So the 

lagrangian is: 

where U is the gravitational potential: 

The position of the centre of mass is: 

'.>(\ -- -
The position ofr is defined in the (1, 2, 3) frame of the principal moments of ine11ia: __ , 

' 

in which ( \\ , ( \ :l. , and ( \.:3 are constants defined by the shape of the 

gyroscope and related to the principal moment;>Jinertia. 

So the combined motion is nutation and precession of the gyroscope 

superimposed on orbital motion. 

The transformation from (1, 2, 3) to (X, Y, Z) is given by { 1 -12} 
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If the orbit is considered to be planar, then: 
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The dynamics are therefore given by five Euler Lagrange equations in five Lagrange variables 

as follows 

These must be solved simultaneously. Note that: 
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These can be evaluated by computer algebra to eliminate human enor. The lagrangian is 

It is seen that the Milankowitch cycles are the result of intricate dynamics which are all inter 

related. The solution of this problem is discussed in Section 3 using numerical methods. 

3. NUMERICAL SOLUTIONS AND GRAPHICS OF SELECTED RESULTS. 
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3 Numerical solutions and graphics of selected

results

We will consider three special cases of gyroscopic motion in this section.

3.1 Motion of a free falling gyroscope

We compute the motion of a symmetric top with one point �xed, where the
�xed point is freely moving in the Z direction. This is a free falling gyroscope.
The model of the gyro �xed having Euler angles θ, φ, ψ is extended by a
coordinate R representing the Z motion, see Fig. 1. Then the rotational part
of the Lagrangian is according to Eq. (46):

Trot =
1

2
I12

(
φ̇2 sin(θ)2 + θ̇2

)
+

1

2
I3

(
φ̇ cos(θ) + ψ̇

)2

. (79)

The translational part has to be extended by an Ṙ term, representing the ve-
locity in Z direction:

Ttrans =
m

2

(
Ṙ+ hθ̇ sin(θ)

)2

. (80)

Correspondingly the potential energy is

U = mg (h cos(θ) +R) (81)

with gravitational acceleration g. The Lagrangian is

L = Trot + Ttrans − U. (82)

The four Lagrange equations consist of three equations for θ, φ, ψ as before plus
an additinal one for the R coordinate:

R̈ = hθ̈ sin(θ) + hθ̇2 cos(θ)− g. (83)
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There is a coupling between the second derivatives of R and θ, therefore this
is not the canonical form. Resolving the Lagrange equation system of four
unknowns θ̈, φ̈, ψ̈, R̈ then gives the canonical equations

θ̈ =

(
(I12 − I3) φ̇

2 cos (θ)− I3 φ̇ ψ̇
)
sin (θ)

I12
, (84)

φ̈ = −

(
(2I12 − I3) φ̇ cos (θ)− I3 ψ̇

)
θ̇

I12 sin (θ)
, (85)

ψ̈ =

(
(I12 − I3) φ̇ cos (θ)

2 − I3 ψ̇ cos (θ) + I12 φ̇
)
θ̇

I12 sin (θ)
, (86)

R̈ = h cos (θ) θ̇2 +

(
(I12 − I3)h φ̇

2 cos (θ)− I3h φ̇ ψ̇
)
sin (θ)

2

I12
− g. (87)

The numerical solution of Eqs. (84-87) is presented in Figs. 2-4 for a sutable
set of initial conditions. From Fig. 2 can be seen that the angles of nutation
and precession (θ and φ) oscillate with phase shift while the angel of rotation
(ψ) increases roughly linearly, i.e. the rotation speed is nearly constant but
modulated by the other angle positions. There is an impact on the rotation of
the rigid body around its body axis. This e�ect cannot occur when only two
angles of polar coordination system (θ, φ) are used, then the degree of freedom
is lowered by one and essential information is missing. The gyroscope is moving
in free fall in negative Z direction. This can be seen from the free fall parabola
of R (Fig. 3). The velocity would be linear in such a case but is modulated by
the angular precession. The space curve of the centre of mass (Fig. 4) shows
an elliptic helix with variable pitch due to the acceleration in −Z direction.

3.2 Explanation of Laithwaite experiment

In the Laithwaite experiment a spinning top is lifted in a way that during lift-
o� the axis is moved in a manner that the force for lifting obviously is small
compared to the weight of the spinning top. It may be that the initial conditions
of nutation are modi�ed so that the gravitational force is counteracted for a
moment. This means that

R̈ = 0 (88)

for this moment. Inserting this in Eq. (87) and assuming I12 = I3 for simplicity,
leads to the condition

g = h θ̇2 cos (θ)− h φ̇ψ̇ sin (θ)
2
. (89)

The simulation results show that such a condition can be met by a strong
negative initial value of θ̇ giving the spinning top a kick. Then the position
of the �xed point (held by hand) overshoots the initial position as shown in
Fig. 5. The vertical velocity v = Ṙ is positive and oscillates relatively strongly
during the later motion. The condition of weightlessness, Eq. (89), is graphed
in Fig. 6. The right hand side and left hand side of the equation are plotted,
and the spinning top is weightless at the intersection points of both curves. The
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details depend on the parameters chosen. Our calculation is a model calculation
without using parameters of the real system because this requires a considerable
recherche e�ort. We can show that the Laithwaite experiment is possible in
principle on the basis of classical dynamics.

3.3 External torque

An external torque can be introduced by a generalized force into the Lagrange
mechanism. Since we ware working with potentials here, we de�ne a potential
giving a constant torque Tq0 in Z direction (for the angle φ) by

Tq = −∂Uq

∂φ
(90)

with

Uq = −Tq0 φ (91)

and adding this to the potential energy:

U = mg (h cos(θ) +R) + Uq. (92)

This term - if chosen not too small - has an enormous impact on the motion of
the gyroscope. The results can be very exotic in dependence of the value of Tq0
and the initial conditions. Fig. 7 shows the three angular frequencies. There
is an initial phase where the φ rotation remains constant although an external
force is being applied. After this phase, φ̇ increases linearly in average due to
the torque as expected. The corresponding angular trajectories are graphed in
Fig. 8. The angle θ shows a nutation. Interestingly, the self-rotation of the
gyroscope changes direction after the initial phase, standing still for a short
moment (crossing of zero axis). The vertical velocity (Fig. 9) shows strong
oscillations which are even detectable in the linear motion R. The initial phase
is clearly discernible from the rest by inspecting the space curve of the centre of
mass (Fig. 10). After some irregular initial motions the φ rotation dominates.

Other, more complicated e�ects emerge when Tq is made periodic in time,
for example

Tq = Tq0 cos(ωt) (93)

with a time frequency ω. Then new e�ects like heterodynes in angular velocities
can appear, see Fig. 11 as an example. In this case there is no continuous
rotation in φ direction. By suitable initial conditions, it is even possible to stop
all rotations.

What could not be con�rmed is the lifting e�ect experimentally investigated
by Shipov. By applying a torque in φ (i.e. around the Z direction) a gyroscope
should lose weight. This would be an increase of linear momentum against
gravitational force. Although momenta can be exchanged between all kinds
of motion, a Lagrangian formalism conserves total momentum. This could be
circumvented by applying an external torque, but it seems that several kinds
of torque must be switched on and o� in a complicated way to give a resulting
linear motion against the gravitational force. A simple φ torque seems not to
reproduce such an e�ect.
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Figure 1: Geometry of a free falling gyroscope with one point �xed.

Figure 2: Trajectories θ(t), φ(t), ψ(t) for a free falling gyroscope.
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Figure 3: Vertical velocity v(t) and height R(t) for a free falling gyroscope.

Figure 4: Space curve for a free falling gyroscope.
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Figure 5: Example values v(t) and R(t) for Laithwaite experiment.

Figure 6: Both sides of Eq. (89) demonstrating weightless points.
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Figure 7: Trajectories θ̇(t), φ̇(t), ψ̇(t) for an external φ torque.

Figure 8: Trajectories θ(t), φ(t), ψ(t) for an external φ torque.
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Figure 9: Trajectories v(t), R(t) for an external φ torque.

Figure 10: Space curve for an external φ torque.
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Figure 11: Angular velocities for an external, time-varying φ torque.
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