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ABSTRACT 

The motion of the classical gyroscope is described in terms of spherical polar 

coordinates and it is shown that the gravitational attraction between its centre of mass and the 

earth's mass is countered by three dimensional centrifugal and Coriolis forces. The overall 

motion of the centre of mass is intricate and is governed by the expression for acceleration n 

spherical polars. The gyroscope's point of contact with the earth's surface may be elevated by 

an additional force or torque. ECE2 fluid dynamics is used to propose one such origin. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 12} ECE2 fluid dynamics has been developed 

systematically, the basic concept being that spacetime, aether or vacuum is developed as a 

fluid governed by the laws of fluid dynamics in ECE2 format. In Section 2 the method is 

extended to rotational motion, the gyroscope being used as an example. This paper is a 

summary of detailed calculations found in the notes accompanying UFT367 on www.aias.us. 

Note 367(1) summarizes motion in plane polar coordinates and introduces the effect of the 

fluid spacetime through the convective derivative of a velocity field. Note 367(2) introduces 

the three dimensional Euler equations and discusses the basic concept of motion in a rotating 

frame- the dynamics of the axes themselves. Note 367(3) calculates the effect of adding the 

convective derivative of angular momentum to the laboratory frame torque on a gyro. The 

convective derivative represents the effect of a fluid spacetime on the gyro. Note 367( 4) 

considers gyroscope theory in classical dynamics, with the addition of the convective 

derivative. Note 365(5) is a force based evaluation of the gyroscope with considerations of 

the extra force due to the convective derivative, so the complete derivative of velocity 

becomes the convective derivative. Note 3\7(6) is the lagrangian development of the motion 

of a symmetric top with one point fixed. The geometry of this note can be adjusted to 

describe the well known experiment by Laithwaite in which the gyroscope is horizontal. Note 

367(7) defines the linear velocity and acceleration in spherical polar coordinates. Note 367(8) 

defines moving frame forces in terms of spherical polar coordinates and is the basis of 

Section 2 of this paper. 

2. THE GYROSCOPE IN SPHERICAL POLAR COORDINATES 

The fundamental concept ofthe moving frame (1, 2, 3) is the motion of its unit 



vectors: 
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where CV -- is the angular velocity: 

Therefore the force in frame ( 1, 2, 3) is defined { 1 - 12} by: 
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where the velocity is defined by: 
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Fig. ( ~ ) defines frame (1, 2, 3) in terms of spherical polar coordinates: 
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The force in the moving frame is: 
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where: 
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and: 

By galilean invariance in classical dynamics: 

") ") r: ) ") f "2 ") ' f, t f). t c> "" f (' t e t f 1 · _ ( 1D 

") ~ ") 

- f~ t f ;I t f '- . 

The force in the laboratory frame is the gravitational force on the centre of mass of 

the gyro of mass m: 



f -
where the acceleration due to the earth's gravity is: 

m& 
where M and Rare the mass and radius of the earth and G is Newton's constant. In spherical 

polar coordinates the radius vector is defined as: 
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where !::_< is the radial unit vector ofthe spherical polar coordinates. Note that the gyr~ is 

always governed by Eq. ( \\ ) and its point of contact cannot be elevated. This is every day 

experience as in a spinning top. In general: 
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In the gyro: 
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and: 

This describes a non spinning gyro, its motion is pure gravitational attraction between m and 

M. When the gyro is spun, Eq. ( \5 ) applies and the force of gravitation is counterbalanced 

as follows. 
_. 

In Eq. ( \ '::> ): 
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so equating k components: 

In the absence of spin: 



and: 

and the force of attraction is counterbalanced by three dimensional centrifugal and Corio lis 

forces. 

In the special case: 
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Eq. ( d.b ) reduces to the Leibnitz equation of planar orbits: 
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Therefore the gyro is a three dimensional orbit of its centre of mass about its point of contact 

with the earth's surface, QED. 

As described in UFT270, Eq. ( d....h ) contains constants of motion which will be 

developed in the next paper, and which simplify the problem of solving Eq. ( d.J,') . In ECE2 

fluid dynamics the complete 7rce is the convective)derivative: ~_{ ..J • (] \ --J _ (l q\ 
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and there is present in general a force that can elevate the point of the gyro: 



In ECE2 fluid dynamics the velocity of classical dynamics: 

-
is replaced by the velocity field: 

--

where: 

for rotational motion. 

ECE2 fluid dynamics is capable of providing an explanation for well known 

experiments by Laithwaite and Shipov in which the point of the gyro is elevated. It may also 

be elevated, of course, by an applied mechanical force in the laboratory frame. 

3. NUMERICAL AND GRAPHICAL ANALYSIS 
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3 Numerical and graphical analysis

According to Eq. (29), the complete �uid dynamics force is

F =
Dv

Dt
=

dv

dt
+ ω × v + Fc (35)

with the convective force

Fc = (v ·∇)v. (36)

In this section we give some examples for the convective force and observe if
this will produce a lifting force in Z direction for the gyroscope. Some analyt-
ical expressions for the velocity �eld v are given in Table 1, together with the
resulting convective term Fc.

The �rst example is a longitudinal harmonic wave in Z direction. The graphs
of v and Fc in Fig. 1 (for t = 0) show that the resulting �uid dynamics force
has the same direction but doubled frequency, i.e. the force oscillates twice as
fast as the velocity �eld. A similar result is obtained for a circularly polarized
wave, see case 2. The spatial distribution of the velocity vector in the XY plane
is graphed in Fig. 2. There are virtual sources and sinks that vary over time
(we only consider the case t = 0 again). The pattern of the corresponding force
(Fig. 3) shows an oscillating pattern with doubled space frequency.

A longitudinal spherical wave (case 3) gives the same results as case 1 and
is not extra graphed. An interesting case are polynomially varying velocities in
Z direction (case 4). The exponent a is changed into 2a − 1 which gives force
enhancements with higher exponents for a > 1, see examples in Fig. 4. When
a < 1 is chosen, then root-like velocities result. The force has a singularity
at z = 0 so that it is possible to create very strong �uid forces near to this
point (Fig. 5). An exponentially growing velocity (case 6) generates a force
with doubled exponent so that this is also a possibility for enhancing the force
signi�cantly.
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No. Type v Fc

1
longitudinal
wave in Z
direction

 0
0

v3 cos(kZZ − ωt)

  0
0

−v3
2kZ sin (2kZZ − 2ωt)


2

circularly
polarized
plane wave

v1 cos(kXX − ωt)
v2 sin(kY Y − ωt)

0

 − v1
2

2 kX sin (2kXX − 2ωt)
v2

2

2 kY sin (2kY Y − 2ωt)
0


3

spherical
longitudinal
wave

v1 cos(krr − ωt)
0
0

 −v1
2kr sin (2krr − 2ωt)

0
0


4

polynomial
velocity
characteris-
tics

 0
0

v3Z
a

  0
0

av3
2Z2a−1


5

exponential
velocity
characteris-
tics

 0
0

v3 exp(aZ)

  0
0

av3
2 exp(2aZ)


Table 1: Examples for velocity v and convective force term Fc.

Figure 1: Longitudinal wave in Z direction.
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Figure 2: Circularly polarized wave, v distribution.
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Figure 3: Circularly polarized wave, Fc distribution.

Figure 4: Polynomial velocity, a ≥ 1.
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Figure 5: Polynomial velocity, a < 1.

Figure 6: Exponential velocity.
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