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Abstract	
Based on the compatibility of the metric only, in general, it is shown that the Christoffel 

connection Γ			#$%  is not anti-symmetric in the last two indices. The elements of the Christoffel 

connection can be computed from the tetrad postulate but are not uniquely defined. The same 

holds for Christoffel symbols of a totally anti-symmetric torsion tensor. Non-diagonal elements 

of the metric of spacetime have to be restricted to a special form to allow fulfillment of the tetrad 

postulate. By additional constraints it is possible to obtain Christoffel connections being anti-

symmetric in non-diagonal terms, but with non-zero diagonal elements.  It is also shown that for 

a totally antisymmetric torsion, if the connection is antisymmetric in any two indices, then it is 

totally antisymmetric. 

1. Introduction	
In this paper we investigate the symmetry of the Christoffel symbols. It has been shown in 

various papers of ECE theory [1]-[3] that the symbols cannot be symmetric in their two last 

indices. This was assumed in Einsteinian relativity but leads to inescapable contradictions. For 

example the Bianchi identity does not result in a zero sum for the curvature terms but exhibits 

derivatives of torsion terms at the right hand side. Therefore curvature is inseparable from 

torsion in general. The most general form of the Christoffel symbols then is asymmetric in their 

last two indices. Special cases will be considered in this paper. In Cartan geometry the torsion 

tensor is defined as anti-symmetric in its two last indices. As an additional constraint, the totally 

anti-symmetric torsion tensor has the following anti-symmetries: 

T			#$
% = −T			$#

%   (1) 

T			#$
% = −T			%$

#            (2) 

T			#$
% = −T			#%$             (3) 



Any two of the anti-symmetries automatically imply the third.  For example, if we assume the 

anti-symmetries of equations (1) and (2), then 

T			#%$ = −T			%#$ = T			$#
% = −T			#$

%  .         (4) 

This is true for any two of the three anti-symmetries. 

2. Derivation	of	Jensen's	Expression	for	the	Christoffel	Symbols	with	
Torsion	

The well known relation between the symmetric Christoffel symbols and the metric is [4] 

Γ			#$) = *
+
𝑔%) -./0

-12
+ -.02

-1/
− -.2/

-10
 .        (5) 

Now assume connections of arbitrary symmetry. Then this formula is not valid and we have to 

start from the equations of metric compatibility as for example in [5]: 

4567
489

− Γ			:;< g<>−Γ			:>< g;< = 0,         (6) 

4579
486

− Γ			;@< g<A−Γ			;:< g>< = 0,         (7) 

4596
48B

− Γ			>:< g<;−Γ			>;< g:< = 0.        (8) 

Subtract (7) and (8) from (6): 

 -.2/
-10

− -./0
-12

− -.02
-1/

− Γ			%#C 𝑔C$+Γ			#$C 𝑔C%+Γ			$%C 𝑔C# − Γ			%$C 𝑔#C+Γ			#%C 𝑔$C+Γ			$#C 𝑔%C = 0.   (9) 

Apply definition of torsion: 

-.2/
-10

− -./0
-12

− -.02
-1/

+ T			#%C 𝑔C$+T			$%C 𝑔C#+(Γ			#$C + Γ			$#C )𝑔%C = 0.     (10) 

Add −2Γ			#$C 𝑔%C on both sides and apply definition of torsion again: 

 -.2/
-10

− -./0
-12

− -.02
-1/

+ T			#%C 𝑔C$+T			$%C 𝑔C# − T			#$C 𝑔%C = −2Γ			#$C 𝑔%C .     (11) 

Now evaluate the pull down of indexes by the metric: 

-.2/
-10

− -./0
-12

− -.02
-1/

+ T	$#%+T#$% − T	%#$ = −2Γ%#$  .      (12) 



Raise the first index of Γ%#$ by multiplying with g%) and multiply by −1: 

Γ#$
% = *

+
g%) -.2/

-10
+ -./0

-12
− -.02

-1/
− T	$#%−T#$% + T	%#$   .      (13) 

This is the result of Carroll [5] with additional torsion terms. The corresponding equation of 

Jensen [6] reads: 

Γ#$
% = *

+
g%) -.G/

-12
+ -.2G

-1/
− -.2/

-1G
− T	#$)−T$#) + T	)#$   .      (14) 

This is identical with the result (13) by interchanging the indices ρ and σ. 

3. Consequences	of	Anti-Symmetric	Torsion	
The Einstein summation convention will not be used in the following discussion.  Later it will be 

seen that repetitive indices will appear where summation is not implied, imparting possible 

confusion.   

Inverting 𝜇		and 𝜈 in equation (14) gives  

Γ				$#
% = *

+
𝑔%) -.G2

-1/
+ -./G

-12
− -./2

-1G
− 𝑇$#) − 𝑇#$) + 𝑇)$#)  .      (15) 

Adding (14) and (15) results in 

Γ			#$
% + Γ				$#

% = *
+

𝑔%) - .G/K./G
-12

+ - .2GK.G2
-1/

− - .2/K-./2
-1G

− 𝑇#$) − 𝑇$#) + 𝑇)#$ − 𝑇$#) − 𝑇#$) + 𝑇)$#)  (16a) 

which reduces to 

Γ			#$
% + Γ				$#

% = *
+

𝑔%) - .G/K./G
-12

+ - .2GK.G2
-1/

− - .2/K-./2
-1G

− 2𝑇#$) − 2𝑇$#) + 𝑇)#$ + 𝑇𝜎𝜈𝜇)  . (16b) 

Subtracting (15) from (14) gives 

Γ			#$
% − Γ				$#

% = *
+

𝑔%) -.G/
-12

+ -.2G
-1/

− -.2/
-1G

− -.G2
-1/

− -./G
-12

+ -./2
-1G

− 𝑇#$) − 𝑇$#) + 𝑇)#$ + 𝑇$#) + 𝑇#$) − 𝑇)$#)  

            (16c) 

which upon collecting like terms becomes 

Γ			#$
% − Γ				$#

% = *
+

𝑔%) - .G/M./G
-12

+ - .2GM.G2
-1/

− - .2/M-./2
-1G

+ 𝑇)#$ − 𝑇)$#) .     (17) 

Torsion is given by [5], 



T			NOP = Γ			NOP − Γ			ONP  ,          (18) 

and is easily seen to be anti-symmetric in indices 𝑎 and 𝑏. 

Noting that 

T			#$P = T			NOP 𝑞		#		N 𝑞		$O            (19) 

where 𝑞		#		N  and 𝑞		$O  are elements of the Cartan tetrad, if one applies equation (19) to equation 

(18), it is seen that the tensor  T			#$P   is anti-symmetric in  𝜇 and 𝜈.  Further, since 

T			#$C = T			#$P 𝑞		P		C ,            (20) 

we see that  T			#$C   is anti-symmetric in  𝜇 and 𝜈.  Writing 

𝑇)#$ = T			#$C 𝑔C)            (21) 

the tensor  𝑇)#$  is also  seen to be anti-symmetric in  𝜇 and 𝜈 , i.e. 

𝑇)#$ = −𝑇)$#.            (22) 

With this anti-symmetry, equation (17) becomes 

Γ			#$
% − Γ				$#

% = *
+

𝑔%) - .G/M./G
-12

+ - .2GM.G2
-1/

− - .2/M-./2
-1G

+ 2𝑇)#$)  .    (23) 

Since the metric is symmetric, equation (23) simplifies to the definition of torsion 

Γ			#$
% − Γ				$#

% = 𝑔%)) 𝑇)#$ = T			#$
%          (24) 

as expected. If the metric were not symmetric, this would not be compatible with the definition 

of torsion. 

Noting the anti-symmetry of equation (22), equation (16b) becomes 

Γ			#$
% + Γ				$#

% = *
+

𝑔%) - .G/K./G
-12

+ - .2GK.G2
-1/

− - .2/K-./2
-1G

− 2𝑇#$) − 2𝑇$#)) .   (25) 

Noting  

𝑇#$) = T			$)C 𝑔C#	 = Γ			$)C − Γ			)$C 𝑔C#	 ,        (26) 

𝑇$#) = T			#)C 𝑔C$	 = Γ			#)C − Γ			)#C 𝑔C$	 ,        (27) 



equation (25) becomes 

Γ			#$
% + Γ				$#

% = 1
2 𝑔%) - .G/K./G

-12
+ - .2GK.G2

-1/
− - .2/K-./2

-1G
− 2 Γ			$)C − Γ			)$C 𝑔C#	 	− 2 Γ			#)C − Γ			)#C 𝑔C$			)     

            (28) 

If we expand the summation, this becomes 

Γ			#$
% + Γ				$#

% = 1
2 𝑔%) - .G/K./G

-12
+ - .2GK.G2

-1/
− - .2/K-./2

-1G
	) 	− Γ#$

				% − Γ#		$
	% 	− Γ$#

			% − Γ$		#
	%   (29) 

which re-arranges to 

Γ			#$
% + Γ				$#

% + Γ#$
				% + Γ$#

			% − Γ#		$
	% + Γ$		#

	% = 1
2 𝑔%) - .G/K./G

-12
+ - .2GK.G2

-1/
− - .2/K-./2

-1G
	)  . (30) 

Since the metric of space-time is symmetric, equation (30) reduces to 

Γ			#$
% + Γ				$#

% + Γ;>
			: + Γ>;

			: − Γ;			>
	: + Γ>			;

	: = 𝑔%) -.G/
-12

+ -.2G
-1/

− -.2/
-1G)   .   (31) 

This is the generalization of (5) including torsion. 

4. Totally	Anti-symmetric	Torsion	
Suppose that, in addition to the anti-symmetry of equation (22), we assume   

T			#$
% = −T			%$

#            (32) 

or equivalently 

𝑇%#$ = −𝑇#%$  .           (33) 

Such a torsion tensor is termed totally anti-symmetric. Now equation (25) becomes 

Γ			#$
% + Γ				$#

% = *
+

𝑔%) - .G/K./G
-12

+ - .2GK.G2
-1/

− - .2/K-./2
-1G

	)  .     (34) 

Comparing equations (30) and (34) we see that  

Γ;>
			: + Γ>;

			: = Γ;			>
	: + Γ>			;

	:  .         (35) 

To the authors’ knowledge, this is a new constraint equation on the Christoffel connection for a 

totally anti-symmetric torsion tensor.   



Note that equation (35) can be written 

𝑔%C Γ;><			 + Γ>;<			 − Γ;<>	 + Γ>	<	;	
C = 0        (36) 

If for example, the connection can be shown to be antisymmetric in a pair of indices such as 

Γ			#$
% + Γ				$#

% = 0            (37) 

then  

𝑔%C Γ;><			 + Γ>;<			 + Γ;><	 + Γ>;<		
C = 0        (38) 

or 

𝑔%C Γ;><			 + Γ>;<			C = 0           (39) 

From this we have 

Γ;>
			: = −Γ>;

			:            (40) 

Then from equation (35) 

Γ;			>
	: = −Γ>			;

	:             (41) 

That is, if the torsion is totally antisymmetric and the connection is antisymmetric in any two 

indices, then the connection is totally antisymmetric. 

Without restriction on the connection, since the metric is symmetric, equation (34) becomes 

Γ			#$
% + Γ				$#

% = 𝑔%) -.G/
-12

+ -.2G
-1/

− -.2/
-1G)  .       (42) 

We note in passing that the Christoffel connection without torsion given by Carroll [5] and Wald 

[4] is a special case of this equation for zero torsion when 

Γ			#$
% = Γ				$#

%  .           (43) 

In general, without further arguments than metric compatibility, for a totally anti-symmetric 

torsion, equation (42) implies some degree of antisymmetry for the connection, i.e. when  

• the metric is constant then the connection is totally antisymmetric 



• the metric is anti-symmetric, then 

𝑔%) - .G/K./G
-12

+ - .2GK.G2
-1/

− - .2/K-./2
-1G

	) = 0      (44) 

The connection is again totally antisymmetric. As explained earlier, this is only a 

hypothetical case. 

• the metric is diagonal, the connection is, without other considerations, totally 

antisymmetric except for the diagonal elements. 

5. Totally	Antisymmetric	Torsion	with	Diagonal	Metric	
	

Consider now, the case where the metric has diagonal components only.  Given this, equation 

(34) reduces to  

Γ			#$
% + Γ				$#

% = 𝑔%% -.0/
-12

+ -.20
-1/

− -.2/
-10

	𝑖𝑓		𝜌 = 𝜈	𝑜𝑟	𝜌 = 𝜇		𝑜𝑟		𝜇 = 𝜈
0																																													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

						    (45) 

That is, on the basis of the compatibility of the metric alone, for a metric that is diagonal and 

torsion is totally antisymmetric,  Γ			#$
%   is either “totally antisymmetric” or zero, with the 

exception of the diagonals, as indicated in equation (45).  The diagonal elements are given by 

2Γ			##
% = −𝑔%% -.22

-10
																																																										𝜌 ≠ 𝜈, 𝜌 ≠ 𝜇	, 𝜇 = 𝜈    (46) 

Γ			#$$ + Γ				$#$ = 𝑔$$ -.//
-12

																																																		𝜌 = 𝜈, 𝜌 ≠ 𝜇	, 𝜇 ≠ 𝜈    (47) 

Γ			#$
# + Γ				$#

# = 𝑔## -.22
-1/

																																																	𝜌 ≠ 𝜈, 𝜌 = 𝜇	, 𝜇 ≠ 𝜈    (48) 

2Γ			##
# = 𝑔## -.22

-12
																																																												𝜌 = 𝜈, 𝜌 = 𝜇	, 𝜇 = 𝜈    (49) 

This argument alone makes symmetry of the connection impossible unless it is identically zero.  

Other arguments are needed if totally antisymmetry of the connection is to be proven. Recall that 

there is no summation on repeated indices implied in these equations. 

6. Computation	schemes	for	connections	with	torsion	
Taking one of the equations (6-8), we obtain a linear equation system for 43 = 64 components of 

the Γ connections, assuming no further symmetry. At the same time we have 64 single equations 



for all combinations of ρ, µ, ν. This could give a well defined equation set for determining all Γ 

connections. However, the metric is symmetric, introducing certain symmetry into the equations 

so that not all equations are independent of each other. Using a diagonal metric, where each 

element depends on all four coordinates, for example 

𝑔 =

a(b,c,d,e) f f
f g(b,c,d,e) f
f f h(b,c,d,e)

											
f
f
f

																															f																							 f																											f 														i(b,c,d,e)
    (50)	

with coordinates 𝑡, 𝑟, 𝜑, 𝜃, computer algebra gives only 24 independent equations from (6). This 

means that 24 free parameters have to be determined arbitrarily to make the Γ connections 

unique. Since the covariant derivative is determined by the connections, this means that the 

covariant derivative of such a metric with torsion is not uniquely defined, in contrast to a torsion-

free geometry. This seems to be a serious mathematical problem. 

Adding anti-symmetry conditions for the last two indices of the Γ connection gives 4·6=24 

additional conditions 

Γ			#$
% = −Γ				$#

%            (51) 

for all non-diagonal elements with 𝜇 ≠ 𝜈. Then the number of independent equations is increased 

to 60, but 4 dependent equations remain, leaving 4 free parameters undefined. The diagonal 

elements Γ			##
%  are different from zero. If they are assumed to be zero, giving a fully anti-

symmetric Γ connection, then the equation system is not solvable. 

The above result remains valid if the metric has non-diagonal elements which depend on the 

coordinates of the row and column they are placed on, for example g12(t,r), g13(t,φ), etc., for 

example: 

𝑔 =

a(b,c,d,e) l(b,c) m(b,d)
l(b,c) g(b,c,d,e) f
m(b,d) f h(b,c,d,e)

					
n(b,e)
f
f

												n(b,e) 		f																													f																i(b,c,d,e)
.      (52) 

However, introducing an asymmetry or anti-symmetry in the metrical matrix prohibits a solution 

of the equation system, even without additional anti-symmetry conditions for the Γ connections. 



The last investigated example is for the totally anti-symmetric torsion. Then the Γ connections 

are determined from equation (42) instead of (6). The result is again only 24 independent 

equations for metrics (50) and (52). If additional anti-symmetry is enforced (equation (51)), no 

solution is obtained. All results are summarized in Table 1. The equation system for standard 

anti-symmetric torsion behaves identical to that for fully anti-symmetric torsion if no additional 

anti-symmetry of the connections is assumed. When the latter is the case, there are no solutions 

for total anti-symmetric torsion. 

 Diagonal metric Metric with 
special symm. 
non-diagonal 
elements 
𝑔#$(𝑥#, 𝑥$) 

Metric with 
general symm. 
non-diagonal 
elements 
𝑔#$(𝑥f, 𝑥*, 𝑥+, 𝑥p) 

Metric with 
general 
asymmetric non-
diagonal 
elements 

Basis eq.(6) 
 

24 24 24 - 

Basis eq.(6) + 
non-diagonal 
antisymm. cond. 

4 4 - - 

Basis eq.(42) 
(fully antisymm. 
Torsion) 

24 24 24 - 

Basis eq.(42) 
(fully antisymm. 
Torsion) + non-
diagonal 
antisymm. cond. 

- - - - 

Table 1: Number of independent equations from metric compatibility (- means equations not 
solvable). 

7. Commutator	Equation	
The commutator of covariant derivatives leads to the well known commutator equation [2] 

𝐷#, 𝐷$ 𝑉s = 𝑅		C#$s 𝑉C − 𝑇			#$C 𝐷C𝑉s         (53) 

where 𝑉s is an arbitrary vector. The left hand side is anti-symmetric in µ, ν by definition. The 

Riemann tensor 𝑅		C#$s  is defined anti-symmetrically in its last two indices and the same holds for 

torsion. Therefore both sides of the equation are not zero in general for 𝜇 ≠ 𝜈 but vanish for 𝜇 = 𝜈. 

In the torsion tensor only the anti-symmetric part of the Γ connection is effective. If the 

connection is symmetric, torsion vanishes. However the Riemann tensor does not vanish since it 



is defined anti-symmetrically irrespective of the symmetry of the connection. Therefore, for a 

symmetric connection, the commutator equation simply reduces to 

𝐷#, 𝐷$ 𝑉s = 𝑅		C#$s 𝑉C .         (54) 

For 𝜇 = 𝜈 both sides vanish again, but not for 𝜇 ≠ 𝜈.  

8. Discussion	and	Conclusions	
In earlier work where the symmetric connection of Einsteinian relativity (now obsolete) was 

used [2] it is convenient to start with a given metric and then compute the Christoffel symbols by 

equation (5). With knowledge of both the metric and the connections, all curvature elements of 

Riemann geometry (Riemann tensor, Ricci tensor, etc.) can be computed. The same could be 

done for Cartan geometry. Typically one would start with the tetrad which is the coordinate 

transformation between base manifold and tangent space. The metric then is computed by 

𝑔#$ = 𝑞			#N 𝑞			$O 	𝜂NO           (55) 

where 𝜂NO is the Minkowski metric. The Γ connection is computed from either (6) or (42) (in 

case of totally anti-symmetric torsion). By the Γ connection, torsion and curvature tensors can be 

determined as in case of Einsteinian relativity. However the Bianchi identity then contains 

torsion and has to be checked separately. 

We have shown that the Christoffel connection or symbol has non-vanishing diagonal elements. 

Antisymmetry in the non-diagonal elements can be enforced but there is a problem of defining a 

unique covariant derivative for manifolds with torsion because the methods described in this 

paper do not lead to a unique solution for the Christoffel connections. This problem arises for 

torsion with anti-symmetry in the last two indices as well as in totally anti-symmetric torsion. 

We can compare this indeterminacy problem with Einsteinian relativity where it is an intrinsic 

feature. Since the Einstein field equations are generally covariant, a coordinate transformation of 

the form 

𝑥′# = 𝑥w#(𝑥f, 𝑥*, 𝑥+, 𝑥p)          (56) 



can always be performed, letting the field equations unchanged. This means that the 10 

independent elements of the metric have 4 free parameters, or 4 equations have to be defined 

additionally the make the metric – and the covariant derivative – unique. In Einsteinian theory 

this is a constraint on the Einstein tensor 𝐺#$: 

 𝐷$𝐺#$ = 0            (57) 

which is an invariance requirement consisting of 4 equations. Sometimes this is used as a “gauge 

condition” to find solutions of the field equation. In ECE theory, the coordinate transformation is 

already given by the tetrad and the metric in eq.(54) is uniquely defined. There is no option for 

free parameters in the metric. This cannot be possible because the tetrad is identical to the 

potential according to the first ECE axiom and this cannot be re-gauged.  

If torsion is known, for example by solving the field equations, then the Christoffel connections 

can be computed from (14) in a direct and unique way. It does not seem possible to do it the 

"standard Riemann geometry way". 

In future investigations a meaningful metric with torsion could be derived for examples of 

equation (55) and it could be seen if the same problems of uniqueness arise in this case. 
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