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ABSTRACT 

A scheme of computation and animation is developed to calculate the electric field 

strength and magnetic fl11X density imparted to a circuit from the spacetime (or aether) of 

fluid electrodynamics. The scheme starts with the vorticity equation of fluid dynamics, in 

which the Reynolds number appears. All relevant quantities are computed in terms of the 

velocity field, which becomes turbulent at a given Reynolds number. A turbulent spacetime 

or aether can have measurable effects on the circuit in theory. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 12} the equations of fluid electrodynamics 

have been developed, based on Cartan geometry. The structures of the field equations of 

ECE2 electrodynamics and of fluid dynamics are the same, so concepts can be transferred 

from one area of physics to the other within the context of a geometrically based unified field 

theory (ECE2). In this paper a scheme of computation and animation is developed in order to 

show that in fluid electrodynamics, an electric field strength (E) and a magnetic flux density -
(B) can be imparted to a circuit from the velocity field~ (~t), t) ofthe ubiquitous spacetime 

(or aether) surrounding the circuit. The spacetime is considered to be a fluid with finite mass 

density and charge density. The spacetime fluid is governed by the equations of fluid 

dynamics, and is a source of charge density and current density in fluid electrodynamics. 

This paper is a short synopsis of detailed calculations contained in the notes 

accompanying UFT352 on www.aias.us. Note 352(1) develops the vorticity equation of 

Kambe (UFT349 and UFT351) to include the Reynolds number. Notes 352(2) and 352(4) are 

simplifications of the Kambe vorticity equation. Note 353(3) considers the relevant time 

dependence ofthe field equations ofKambe in preparation for animation. Notes 352(5) to 

352(7) develop the computation scheme which is the subject of this paper, and develop a 

method of computing E and B of the circuit from the velocity field of spacetime. 

Section 2 is based on Notes 352(6) and 352(7) and express all relevant quantities in 

terms of the spacetime velocity field. The end result is a scheme for calculating! and~ 

induced in the circuit by the velocity field of the spacetime or aether. Section 3 contains a 

description of computation, graphics and animation. 



-\ ~ 

2. COMPUTATION I ANIMATION SCHEME 

The first step is to calculate and anima!e the velocity field v (r(t), t)) of --
spacetime or the aether from the simplified vorticity equation developed in UFT349, UFT351 

and notes for UFT352: 

Here w is the vorticity: -
--

Subsequent steps calculate the Kambe charge of fluid dynamics from v: 

and the Kambe current: 

in which h is the enthalpy per unit mass and a 
0 

is the assumed constant speed of sound. 

The inhomogeneous Kambe field equations of fluid dynamics are: 
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and have the same structure as the inhomogeneous fiel'Cl equations of ECE2 electrodynamics 

(1 - 12}. The Kambe electric field is defined as: 
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and calculated from v. 

The next step is to calculate the vacuum charge and current densities of fluid 

electrodynamics (UFT3 51): 

and 

where (-r.. is the mass density of the fluid electrodynamic spacetime and where r 
is the charge density. Here f-0 is the S. I. permittivity in vacuo. Note that Eqs. ( 3 ) and 

( \0 ) imply the continuity equation: 
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because: 
D 

-
The vacuum charge and current densities create E and B in a circuit through the 
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where~~ c :cc...:t denotes the ratio of r and f.,._ in the circuit. 
It is also possible to develop a theory of energy from spacetime in fluid 

electrodynamics by considering firstly the wave equations of ECE2 electrodynamics, in which 

B and E are defined as: 

-
and: 

Using Eqs. ( \\..)and ( \~ ) the homogeneous field equations ofECE2 become 

identities: 

. ~ --
and: 

The inhomogeneous field equations of ECE2 are: 
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where p is the electric charge density and 2 is the electric current density. Her~, is the 

S. I. permeability in vacuo. The ECE2 Coulomb law ( ~ \ ) therefore transforms into: 

G~rw t ~('1- -~) ~ -tT, - (' 
which is a second order wave equation in the potential £ . and the vector potential '.i-

'J) f __. t 'J . d'i:I ~ -tT: . -c }I.,) 
~r 

Eq ( )3, ) can be considered as the equation of a circuit in contact with the vacuum charge 

where: 

Here(~ is the mass density of the spacetime (or vacuum or aether) and f 
density of the spacetime. 

is the charge 

The left hand side ofEq. ( ~~)can be computed directly from Eqs. ( 3 ) and 

( ").(, ) given a parameterization of 0 .,.,._/( ).J occ . Transition to turbulence in 

is governed by the Reynolds number R in Eq. ( 1_ ). 
' Similarly the Ampere Maxwell law of ECE2 can be expressed as: 



where the d' Al b . . em ertian IS defined by: ) J ) o ~ .L- J - '] . - c>:,, 
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Using the condition ( ~ £\ ) in E ~ . q. ( ) giVes the result: 

u r w ~ tt- . - c.1~) 
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Defining: 

-sA -=-· ( Crl ~) - (:,-:) 
it follows that: QWA "'"~.,)A - (3~) 
provided that: ~ c~~ 

As described in detail in Notes 352(6) and 352(7), if the Lorenz gauge is not 

where: 

and: 

and where: 

Eq. ( :>'\ ) again has the structure of the ECE.wave equation. 
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3 Computation, graphics and animation

3.1 Equations inspected

Concerning the numerical solution of equations of �uid dynamics, one has
to strictly discern between time-dependent and time-independent (stationary)
�ows. Time-dependent equations are numerically more stable and therefore eas-
ier to handle by �nite-element solvers. As discussed in UFT Paper 351, all equa-
tions in this paper are homogeneous in the sense that there are no �sourceterms�
indepenent of the �ux velocity v. This leads to a free �oating solution which
does not guarantee conservation of mass. Therefore a normalized scalar pres-
sure �eld p has been added. The divergence of its gradient is assumed to be in
proportion to the divergence of the velocity �eld:

∇ ·∇p = P ∇ · v (43)

with a �penalty constant� P . Then the fundamental vorticity Equation (1)
reads:

R
∂v

∂t
+∇×w +R w × v +∇p = 0. (44)

The equation has been multiplied by R to allow for setting R = 0. For compar-
ison we have studied the stationary form of this equation:

∇×w +R w × v +∇p = 0 (45)

and another (a priori stationary) vorticity equation derived in note 352(2):

∇×w −R

(
2 v ×w − 1

2
∇v2

)
+∇p = 0. (46)

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de

1



3.2 Graphics and animation

The time evolution of Eq. (44) converges to a quasi-stationary state. Calcula-
tions have been carried out for di�erent values of the Reynolds number R. The
sample region is the same as for UFT paper 351. The velocity distribution in
the plane Y = 0 has been graphed in Figs. 1-3 for parameters R = 0.1, 10
and 1000. The velocity maxima change from the output to the input and are
distorted in the centre of inlet and outlet for the highest Reynolds number. The
behaviour of turbulent structures is best studied by the vorticity w. These are
shown for the plane Z = 0 in Figs. 4-6 for the three Reynolds numbers. Ob-
viously the structure becomes signi�cantly more irregular for higher Reynolds
numbers. It should be noted that the numerical precision is not optimal because
of restrictions of the FEM program being available. Therefore results for high
Reynolds numbers are not very reliable.

The time dependence of solutions has been processed to animations which
will be published on the AIAS web site www.aias.us. The results are not always
reproducible, they depend on the size of initial time integration steps. This is
an indicator for a chaotic behaviour of solutions. Sometimes divergences appear
in the main volume during the �rst steps of calculation. Then it takes longer to
bring them to the inlet side which is the stationary �nal state. The calculations
were always started with the valid solution v = 0.

The other graphs show stationary solutions. The stationary form of Eq.(1),
Eq. (45), can be solved for R = 0. This is not possible for the time-dependent
equation. Comparing this solution (Fig. 7) with Fig. 1, it looks very similar,
where the input velocity is even stronger reduced. This picture does not change
signi�cantly for Reynolds numbers up to 1000, showing that turbulence is mainly
a dynamic e�ect. The same result was obtained from the equations solved in
UFT paper 351.

The remaining graphs present results of Eq. (46), which is essentially an
extension of Eq. (45) by a non-linear term. For R = 0, both equations give the
same result. However, Eq. (46) gives converging solutions only for low Reynolds
numbers. In Fig. 8 the velocity distribution for R = 10 is shown. In comparison
with Fig. 2, the non-linear term leads to an enhancement of the input �ow. The
reason for this can be seen from Figs. 9 and 10, where the divergence of the
velocity is graphed. In the main area of the plane the divergence vanishes, i.e. v
is divergence-free there. Going from R = 0 to R = 10, the divergence region is
relocated from the output to the input region. The vorticity (Figs. 11 and 12)
shows a similar tendency, but less pronounced. The same holds for the current
density JF (Fig. 13-14, based on Eq. (10)).

3.3 Algorithms for deriving electromagnetic properties from

�ow properties

For future applications it is important to have a line of computing electro-
magnetic properties directly from the �aether �ow �eld� v. The following two
procedures can be carried out. The �rst is:

1. solve the �ow problem for v

2. compute qF by (3) and ρvac by (11)
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3. compute electric potential φW by (25) assuming ∇×W = 0

4. compute electric �eld by E = −∇φW (eq. (18) without W)

This seems particularly appropriate in case of electrostatic problems. If a mag-
netic �eld is required too, the second procedure is a bit more complicated:

1. compute JF by (10) and Jvac by (12)

2. compute W by (30) where Jvac is used on the RHS

3. compute magnetic induction B by (17)

Alternatively, one could solve the Maxwell-Heaviside-like equations (20) and
(22) directly with vacuum current on the right-hand side. Then the solution
is fully time-dependent by de�nition and computation of potentials is avoided.
Thus the aether problem is reduced to computing a (time-dependent) vacuum
current density and all electrical properties will follow. Practical results will be
given in later papers because volume de�nitions and boundary conditions for
meaningful physical situations have to be developed �rst.

Figure 1: Velocity solution of Eq. (44) for R = 0.1.
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Figure 2: Velocity solution of Eq. (44) for R = 10.

Figure 3: Velocity solution of Eq. (44) for R = 1000.
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Figure 4: Vorticity from Eq. (44) for R = 0.1.

Figure 5: Vorticity from Eq. (44) for R = 10.
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Figure 6: Vorticity from Eq. (44) for R = 1000.

Figure 7: Velocity solution of static Eq. (45).
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Figure 8: Velocity solution of (46) for R = 10.

Figure 9: Divergence of velocity from Eq. (46) for R = 0.
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Figure 10: Divergence of velocity from Eq. (46) for R = 10.

Figure 11: Vorticity from Eq. (46) for R = 0.
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Figure 12: Vorticity from Eq. (46) for R = 10.

Figure 13: Current density JF from Eq. (46) for R = 0.
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Figure 14: Current density JF from Eq. (46) for R = 10.

10



ACKNOWLEDGMENTS 

The British Government is thanked for a Civil List Pension and the staff of AlAS 

and others for many interesting discussions. Dave Burleigh, CEO of Annexa Inc., is thanked 

for hosting www.aias.us, site maintenance, posting and feedback software maintenance. Alex 

Hill is thanked for translation and broadcasting, and Robert Cheshire for broadcasting. 

REFERENCES 

{ 1} M. W. Evans, H. Eckardt, D. W. Lindstrom and S. J. Crothers, "The Principles ofECE 

Theory" (open source on combined sites W\VW.aias.us and www.upitec.org. and New 

Generation Publishing in prep., 2016, Spanish translation by Alex Hill). 

{2} M .W. Evans, S. J. Crothers, H. Eckardt and K. Pendergast, ··criticisms ofthe Einstein 

Field Equation", (CEFE, UFT301 on \VWvv.aias.us and combined sites, Cambridge 

International, CISP, 201 0). 

{3} L. Felker, "The Evans Equations of Unified Field Theory" (UFT302 on \vww.aias.us 

and combined sites, Spanish translation by Alex Hill). 

{ 4} H. Eckardt, "The ECE Engineering Model" (UFT303 on W\VW.aias.us and combined 

sites). 

{5} M. W. Evans, "Collected Scientometrics'' (UFT307 on W\VW.aias.us and combined 

sites). 

{ 6} M. W. Evans, H. Eckardt and D. W. Lindstrom, "Generally Covariant Unified Field 

Theory" (Abramis 2005 to 2011, in seven volumes. and relevant UFT papers on combined 

sites. ) 

{7} M .W. Evans, Ed., J. Found. Phys. Chem. (Cambridge International, CISP, 2011, and 

relevant UFT papers on combined sites). 



{8} M. W. Evans, Ed., "Definitive Refutations of the Einsteinian General Relativity" . 
(special issue ofref. (8), and relevant material on COJ?bined sites). 

{9} M. W. Evans and L. B. Crowell, "Classical and Quantum Electrodynamics and the B(3) 

Field" (World Scientific 2001 and Omnia Opera section of\\'\VW.aias.us). 

{10} M. W. Evans and S. Kielich, Eds., "Modern Nonlinear Optics" (Wiley Interscience, 

New York 1992, reprinted 1993 and 1997, 2001) in two editions and six volumes. 

{ 11} M .W. Evans and J.-P. Vigier, "The Enigmatic Photon" (Kluwer, Dordrecht, 1994 to 

2002, five volumes each, hardback and softback, and Omnia Opera Section ofw\\'w.aias.us) 

{ 12} M. W. Evans and A. A. Hasanein, "The Photomagneton in Quantum Field Theory" 

(World Scientific 1994 ). 




