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ABSTRACT

The Minkowski metric produces and orbital equation which can be interpreted

as a precessing ellipse. This confirms the demonstration in immediately preceding papers that

the hamiltonian and lagrangian of special relativity produce a precessing ellipse using

numerical methods based on computer algebra. It is shown that the claims of general

relativity to produce a precessing ellipse fail qualitatively due to poor methods of

approximation.
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1. INTRODUCTION 

In immediately preceding papers of this series ( 1 - 12} it has been shown that the 

ECE2 unified field theory is Lorentz covariant, so can be developed with the methods of 

special relativity, notably the hamiltonian, lagrangian and the subject of this paper, the 

Minkowski metric and infinitesimal line element. By using a combination of the hamiltonian 

and lagrangian of special relativity it has been shown numerically using a scatter plot method 

{ 1 - 12} that special relativity produces orbital precession. It has also been shown in several 

preceding papers of this series that the methods of Einsteinian general relativity are 

fundamentally incorrect. Rigorous scientometrics { 1 - 12} show that this conclusion has been 

overwhelmingly accepted, and that ECE and ECE2 theory indicate Alwyn van der Merwe's 

well known description of ECE as the post Einsteinian paradigm shift. The Lorentz force law 

of ECE2 theory has been derived and developed into the force law of special relativity. 

As usual this paper must be read with its background notes, the paper itself being a 

summary of the notes. The latter are posted with UFT327 on www.aias.us. Notes 327(1) and 

Notes 327(4) and 327(5) develop the Minkowski metrical method and give foundational 

detail summarized in Note 327(9) on which Section 2 of this paper is based. The other notes 

for this paper refute the calculation of perihelion precession from Einsteinian general 

relativity in several ways. Notes 327(2) and 327(3) refute the Einstein method of 

approximation, showing it to be incorrect using computer algebra to evaluate the integral 

approximated by Einstein in his paper ofNov. 1915. The results of our scholarly scrutiny of 

the Einstein method are given in Section 3 of this paper. Vankov { 1-12} has pointed out 

errors in the Einstein paper of Nov. 1915. These errors were also identified by Schwarzschild 

in Dec. 1915 in a letter to Einstein. The computer algebraic methods available now can 

remove the need for the incorrect approximations of 1915, and show conclusively that the 



Einstein paper. of Nov. 1915 is incorrect. Furthermore, it is well known { 1-12} that the 

Einstein theories of 1905 to 1915 were developed when spacetime torsion was unknown, so 

could not have been correct. It has been proven in several ways { 1-12} that the omission of 

torsion leads to null curvature and no gravitation of the Einstein type. The scientometrics 

show that these proofs have also been overwhelmingly accepted internationally. Previous 

work {1-12} has refuted the Einstein theory in many ways. In Note 327(6) a straightforward 

but accurate method of approximation of the integral used by Einstein is developed and 

evaluated with computer algebra. This method again proves that the claim by Einstein to have 

produced perihelion precession is algebraically incorrect. Its results are given in Section 3. In 

Note 327(7) the apsidal method of reproducing the Einstein claim is shown to rely on 

subjective choice of approximation, so the method is scientifically meaningless. It is an 

example of choosing the approximation to fit the dogma, an example of Langmuir's 

pathological science. ECE and ECE2 set out to improve the elegant methods of Einstein and 

free them of algebraic errors. This is the only way in which progress can eb made in science. 

The dogma of any era is always made obsolete by logic and the Baconian method. 

Section 2 is based on Note 327(9) and shows that the Minkowski metric produces 

precession in the Dirac approximation of the Einstein energy equation and the hamiltonian of 

special relativity. Section 3 is a summary of the numerical results ofthis paper using 

computer algebra and graphics. 

2. PRECESSION FROM THE MINKOWSKI METRIC 

Consider the Minkowski infinitesimal line element: 

where d'"( is the infinitesimal of proper time, dt the infinitesimal of time in the observer 
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frame, and v 
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the velocity in the observer frame, defined by: 
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Therefore: 

is the rest energy and a constant of motion. In Eq. ( _:$ ), the Lorentz factor is: 
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The relativistic total energy is: 
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and the relativistic angular momentum is: 

so 

It follows that: 
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Therefore Eq. ( ) ) is the Einstein energy equation: , · 
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As shown in Note 327(1) and in previous UFT papers { 1 -12}, the orbit is given by: 

) 
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The right hand side of Eq. ( \\ ) contains the ratio p I L of the relativistic linear 

momentum to the relativistic angular momentum: 

f --- ~·_(\d.) 
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Therefore in the Newtonian limit the orbit becomes: 

in which p is defined by the classical hamiltonian: 
0 
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From Eqs. ( 

It is well known { 1 - 12} that the orbit from Eq. ( \ S ) is the conic section: 
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where ~ is the half right latitude and t: the eccentricity. These observables of an 

orbit are described in terms of the planar orbital constants of motion, the classical hamiltonian 

and the classical angular momentum { 1 - 12}. Th~ 'classioal conic section ( \ b ) does not 

precess. The self consistency of the classical analysis follows from the fact that: 
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It follows that: 

where the semi major axis of an elliptical orbit is: 
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It is well known { 1 -12} that the Newtonian orbital velocity is: 

\J: =- YY.L&- ( ~ -
and that the classical angular momentum is defined by: 

So it follows that: 

and that 

Q.E.D. In this analysis the Newtonian potential energy is: 
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The infinitesimal line element ( i ) is derived from the invariant of the Lorentz transform: 
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and does not use the idea of force or potential. The orbit is described entirely by geometry 

manifested through the infinitesimal line element. It is transformed into the familiar 

Newtonian analysis by expressing p through Eq. ( \\.r ). 
v - \\ ) the relativistic angular In the fully relativistic interpretation of Eq. ( 

momentum is the constant of motion { 1 - 12}: 

0 

and not the classical angular momentum L 0 defined by: 

L~ 

Therefore the relativistic orbit can be expressed as: 
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where the square of the Lorentz factor is defined by: 
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The nature of the orbit depends on the interpretation of the term k 

-\ 
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Newtonian interpretation emerges through the weli known limit of the relativistic kinetic 

energy: 
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where: 

-

and where E is the total relativistic energy defined by Eq. ( S ). 
In UFT324 and UFT325 it was shown that the relativistic hamiltonian: 

and relativistic lagrangian: 

give a precessing orbit when used with the Euler Lagrange equations. This result was 

demonstrated using a numerical scatter plot method. The infinitesimal line element 

corresponding to Eqs. ( )) ) and ( 3 4-) is Eq. ( 1_ ), whose orbit is defined by Eq. 

( \\ ). Therefore Eq. ( \\ ) must give a precessing orbit in order to be consistent with 

Eqs. (34) and (35). In the Newtonian limit Eqs. ( ;)~ ) and ( ) 4- ) reduce to: 
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respectively. The relativistic hamiltonian is: 
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so the relativistic momentum: 
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can be defined from 
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As in UFT326, various approximations for p can be developed by use of factorization: 
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so that: 
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Eq. ( 4-\ ) must reduce to Eq. ( 4-~) in the non relativistic limit: 
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In the Dirac approximation (see UFT326 and previous papers) 

This is a very rough approximation which is accepted becasue it leads to a description of the 
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Thomas factor and spin orbit coupling in atomic spectra as is well known, and many other 

well known results which led to ESR, NMR and MRl. In the Dirac approximation the 

classical hamiltonian is defined as: 

From Eqs. ( 

and since: 

the classical hamiltonian becomes: 

The factor two in the brackets on the right hand side of this equation is the Thomas factor. 

Therefore in the Dirac approximation the relativistic momentum is defined by: 

( i -~\~~ \ }~G) 
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and the orbit is given from Eqs. ( \\ ) and (\;---'\)as: 
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Eq. ( 5o ) is a small correction of the Newtonian orbit. Experimentally, the latter 

is observed to precess as is well known. If it is assumed as in previous UFT papers that the 

precessing orbit is given by: 
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in which: 

so: ) i -)(_ - ----;) 
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For a non precessing ellipse: 
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so to an excellent approximation: 
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This gives an order of magnitude for the precession angle which is the same order of 

magnitude as given by Einsteinian general relativity, in which: 

1\ 

Since Einsteinian general relativity is meaningless due to numerous errors, this rough 

approximation based on the Dirac approximation is all that can be claimed theoretically. 
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3 Additional analysis

In Einsteinian theory the orbit θ(u) with u = 1/r has to be computed from
solving the integral

θ(u) =

∫
L0 du√

2m(H + ku− L2
0

2mu
2 +

L2
0

2mr0u
3)

(57)

with non-relativistic angular momentum L0, total energy H, k = mMG and
"Schwarzschild radius" r0. The term in the square root is a polynomial of third
order in u and can be written as

1

α
(u− u1)(u− u2)(u− u3) (58)

where u1 = 1/r1 etc. are characteristic inverse radii. The constants u1, u2, u3
are de�ned by Eq.(57), and

1

α
= u1 + u2 + u3. (59)

Einstein argued by the roots of Eq.(58). The physical range of u is between
two values of u where the denominator vanishes, i.e. one has to �nd the roots
of (58) to �nd the integration interval. In his terminology Einstein wrote the
terms in the denominator in form of

2A

B2
+

α

B2
u− u2 + αu3 (60)

and additionally omitted the cubic term. This seems to be arbitrary but guar-
antees that only two roots exist which then are

u(1,2) =
±
√
8AB2 + α2 + α

2B2
. (61)
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The correct method, however, would be �nding the roots of the cubic equation
(58). By computer algebra this is possible. Quite complicated solutions follow
from which two are complex-valued. This problem of the "true" solution of (58)
have never been addressed in literature.

With modern computer algebra, it is possible to solve Eq.(57) analytically.
Writing it in the form

θ(u) =

∫
du√

α(u− u1)(u− u2)(u− u3)
(62)

leads to a solution which, after some simpli�cations, reads

θ(u) =
2√

α(u2 − u1)
F

(
asin

(√
u1 − u2
u1 − u

)
,
u3 − u1
u2 − u1

)
(63)

with the elliptic integral of �rst kind F(x, y). It has to be noted that this integral
is complex-valued. The real value has to be taken as physical value.

Having found this solution, the result can be plotted and computer graphics
gives an impression of the solution immediately. First we have graphed the
integrand of (62) as a function f(u) with parameters u1 = 3, u2 = 2, α = 0.1
from which follows u3 = 5. Fig. 1 shows that the integrand has strong in�nite
asymptotes as was already known from corresponding plots in UFT papers
150 and 155. u1 and u2 are the physical inverse radii, above u3 an unlimited
unphysical range appears. The real part of solution (63) (Fig. 2) is dominated
by the inverse sine function which is de�ned between u1 and u2 correctly. The
imaginary part pertains to an unphysical range. Choosing parameters di�erently
with u1 < u2 (not shown) gives similar results with positive θ(u). We conclude
that there is no multiplicity of solution for θ, i.e. there is no room for any
precession e�ects from this Einsteinian solution which probably was analysed in
these details for the �rst time.

The last example is an assessment of relativistic e�ects for a non-relativistic
elliptic orbit. The latter is given by

r =
α

1 + ε cos(θ)
. (64)

We assume that the half-right latitude α is a�ected by relativistic e�ects:

α = γ α0 =
1

1− v20/c2
α0 (65)

for a non-relativistic α0. Using the well-known solution

v20 =

(
2

r
− 1

a

)
MG (66)

and inserting this into (64), we obtain an equation for the orbit r(θ) with rela-
tivistic correction:

r =
(2 a ε cos (θ) + 2 a) M G+ aα0 c

2

(ε cos (θ) + 1) M G+ a c2 ε cos (θ) + a c2
. (67)

The graph (Fig. 3) shows what is to be expected from (65): the e�ective alpha
is enlarged by relativistic e�ects (here obtained by varying c and keeping all

2



other parameters to unity). The enlargement is not constant, but there is no
crossing of the curves, that means that the constants of motion are di�erent.
This is plausible because the angular momentum L0 is increased by the gamma
factor. A smaller c here means stronger relativistic e�ects.

Figure 1: Integrand of Einstein integral in form of Eq.(62).
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Figure 2: Analytical solution (63) of the Einstein integral.

Figure 3: Radius function r(θ) for di�erent cases of relativistic e�ects, charac-
terized by c.
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