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A Generally Covariant Wave Equation For
Grand Unified Field Theory

Summary. A generally covariant wave equation is derived geometrically for grand
unified field theory. The equation states most generally that the covariant d’Alember-
tian acting on the vielbein vanishes for the four fields which are thought to exist
in nature: gravitation, electromagnetism, weak field and strong field. The various
known field equations are derived from the wave equation when the vielbein is the
eigenfunction. When the wave equation is applied to gravitation the wave equation
is the eigenequation of wave mechanics corresponding to Einstein’s field equation
in classical mechanics, the vielbein eigenfunction playing the role of the quantized
gravitational field. The three Newton laws, Newton’s law of universal gravitation,
and the Poisson equation are recovered in the classical and nonrelativistic, weak-
field limits of the quantized gravitational field. The single particle wave-equation
and Klein-Gordon equations are recovered in the relativistic, weak-field limit of the
wave equation when scalar components are considered of the vielbein eigenfunction
of the quantized gravitational field. The Schrödinger equation is recovered in the
non-relativistic, weak-field limit of the Klein-Gordon equation). The Dirac equation
is recovered in this weak-field limit of the quantized gravitational field (the non-
relativistic limit of the relativistic, quantized gravitational field when the vielbein
plays the role of the spinor. The wave and field equations of O(3) electrodynam-
ics are recovered when the vielbein becomes the relativistic dreibein (triad) eigen-
function whose three orthonormal space indices become identified with the three
complex circular indices (1), (2), (3), and whose four spacetime indices are the in-
dices of non-Euclidean spacetime (the base manifold). This dreibein is the potential
dreibein of the O(3) electromagnetic field (an electromagnetic potential four-vector
for each index (1), (2), and (3)). The wave equation of the parity violating weak field
is recovered when the orthonormal space indices of the relativistic dreibein eigen-
function are identified with the indices of the three massive weak field bosons. The
wave equation of the strong field is recovered when the orthonormal space indices of
the relativistic vielbein eigenfunction become the eight indices defined by the group
generators of the SU(3) group.

Key words: generally covariant equation, grand unified field theory, gravitation,
higher symmetry electromagnetism, O(3) electrodynamics, weak field, strong field.
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4.1 Introduction

Recently [1] a generally covariant classical field equation has been proposed
for the unification of the classical gravitational and electromagnetic fields by
considering the metric four-vector qµ in non-Euclidean spacetime. In this Let-
ter the corresponding equation in wave (or quantum) mechanics is derived by
considering the action of the covariant d’Alembertian operator on the metric
four-vector considered as the eigenfunction. By deriving a metric compatibil-
ity equation for the metric four-vector a wave equation is obtained from a
fundamental geometrical property: the covariant d’Alembertian acting on the
metric vector vanishes in non-Euclidean spacetime. This geometrical result
is also true when the eigenfunction is a symmetric or anti-symmetric metric
tensor [1], and, most generally, when the eigenfunction is a vielbein [2]. The
wave equation with symmetric metric tensor as eigenfunction is the direct
result of the latter’s metric compatibility equation, and the wave equation
with vielbein as eigenfunction is the result of the tetrad postulate [2]. The
latter is a fundamental result of geometry irrespective of metric compatibil-
ity and whether or not the metric tensor is torsion free. The wave equation
can therefore be constructed as an eigenequation from geometry with differ-
ent types of eigenfunction. This is achieved in this Letter by expressing the
covariant d’Alembertian operator as a sum of the flat space d’Alembertian
operator � plus a term dependent on the non-Euclidean nature of spacetime.
The latter term is shown to be a scalar curvature R which is identified as
the eigenvalue. The eigenoperator is therefore the operator �, and the wave
equation is a fundamental geometrical property of non-Euclidean spacetime
[1,2]. Most generally the eigenfunction is the vielbein [2] ea

µ, which relates an
orthonormal basis (Latin index) to a coordinate basis (Greek index), and the
generally covariant wave equation is the eigenequation

(� + kT )ea
µ = 0. (4.1)

The Einstein field equation [1-3] of gravitational general relativity can be
written in the contracted form [1-4]

R = −kT, (4.2)

where R and T are obtained [4] from the curvature tensor and the canonical
energy momentum tensor by index contraction. If q (S)

µν denotes the symmet-
ric metric tensor defined [1] by

q
(S)

µν = qµqν (4.3)

then
R = qµν(S)Rµν , T = qµν(S)Tµν , (4.4)

where Rµν and Tµν are also symmetric tensors. Therefore the generally co-
variant wave equation is
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(� + kT )ea
µ = 0, kT = −R. (4.5)

It can be seen that Eq. (4.5) has the form of the well known second-
order wave equations of dynamics and electrodynamics, such as the single
particle wave equation, the Klein-Gordon, Dirac, Proca, and d’Alembert [5]
and non-relativistic limiting forms, such as the Schrödinger equation, and, in
the classical limit, the Poisson and Newton equations. The use of the vielbein
as eigenfunction has several well known advantages [2]:

(4.1) The tetrad postulate:
Dνe

a
µ = 0, (4.6)

where Dν denotes the covariant derivative [2], is true for any connection,
whether or not it is metric compatible or torsion free.
(4.2) The use of the vielbein as eigenfunction allows spinors to be analyzed
in non-Euclidean spacetime, and this is essential to derive the Dirac equation
from Eq. (4.5).
(4.3) The index a of the vielbein can be identified with the internal index
of gauge theory [2,5], and this property is essential if Eq. (4.5) is to be an
equation of grand unified field theory.
(4.4) Vielbein theory is highly developed and is closely related to Cartan-
Maurer theory, a generalization of Riemann geometry [2].

The structure group of the tangent bundle in the four dimensional
spacetime base manifold is GL(4, R) [2], the group of real invertible 4 × 4
matrices. In a Lorentzian metric this reduces to the Lorentz group SO(3, 1).
The fibers of the fiber bundle are tied together with ordinary rotations [2]
and the structure group of the new bundle is SO(3), the group of rotations
in three space dimensions without the assumption of parity symmetry. The
electromagnetic potential is defined on this bundle by the dreibein Aa

µ, where
a is (1), (2) or (3), the indices of the complex circular representation of three
dimensional space. The evolution of electrodynamics in this way, as a gauge
theory with O(3) gauge group symmetry, where O(3) is the group of rota-
tions in three dimensions with parity symmetry, began with the proposal of
the B(3) field [6] as being responsible for the inverse Faraday effect in all
materials (phase free magnetization by circularly polarized electromagnetic
radiation). Maxwell Heaviside electrodynamics is a gauge field theory with no
internal indices, and whose internal gauge group symmetry is U(1) [7-12]. Af-
ter a decade of development it is known [12] that there are numerous instances
in which O(3) electrodynamics surpasses U(1) electrodynamics in its ability
to describe experimental data, for example data from interferometry, reflec-
tion, physical optics in general, the inverse Faraday effect, and its resonance
equivalent, radiatively induced fermion resonance [7-12]. Therefore many data
are now known which indicate that the electromagnetic sector of grand unified
field theory is described by an O(3) symmetry gauge field theory, not U(1). In
the development of O(3) electrodynamics the connection on the internal fiber
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bundle of gauge theory was identified for the first time as the connection on
the tangent bundle of general relativity [2]. This is an essential step towards
the evolution of a simple and powerful unified field theory as embodied in
Eq. (4.5) of this Letter. The tangent bundle is defined with respect to the
base manifold, which is four dimensional non-Euclidean spacetime [1]. Prior
to the development of higher symmetry electrodynamics, and generally co-
variant electrodynamics [1,13,14] the tangent bundle of general relativity [2]
was not identified with the fiber bundle of gauge theory, in other words the
internal index of gauge theory was thought to be the index of an abstract
space unrelated to spacetime [2]. In O(3) electrodynamics the internal index
a = (1), (2), (3) represents a physical orthonormal space tangential to the
base manifold and in the basis ((1),(2),(3)) it is possible to define unit vectors
e(1), e(2), e(3) which define a tangent space, a space that is orthonormal to
the base manifold (non-Euclidean, four dimensional spacetime). It therefore
becomes possible to invoke the dreibein, or triad, as described already, with
the three Latin indices (a) representing the orthogonal space and the four
Greek indices (µ) the base manifold. The indices a = (1), (2), (3) can be used
to define the unit vector system in curvilinear coordinate analysis [1,14,15].
One of the unit vectors, e.g., e(1), is a unit tangent vector to the curve, and
the other two, e(2) and e(3), are mutually orthogonal to e(1). This procedure
cures two fundamental inconsistencies of field theory as it stands at present:

(1) The gravitational field is non-Euclidean space time in general relativity,
while the other three fields (electromagnetic, weak and strong) are entities
superimposed on flat or Euclidean spacetime.
(2) The U(1) electromagnetic field has an Abelian and linear character, while
the other three fields are non-Abelian and nonlinear[2].

Therefore the internal gauge space of O(3) electrodynamics is identified
with a tangent space in the complex circular basis ((1),(2),(3)), a basis chosen
to represent circular polarization, a well known empirical property of electro-
magnetic radiation [5-14]. This allows electromagnetism to be developed as
a theory of general relativity [1], using O(3) symmetry covariant derivatives,
which become spin affine connections in vielbein theory [2]. The O(3) elec-
tromagnetic field tensor becomes a Cartan Maurer torsion tensor [2] which is
defined with a spin affine connection on the tangent bundle of general relativ-
ity. These properties are contained with Eq. (4.5), together with the ability
to describe the gravitational, weak and strong fields. Therefore, Eq. (4.5) is a
generally covariant wave equation of grand unified field theory.

In Sec. 2 the wave equation (4.5) is derived for various forms of the
eigenfunction using metric compatibility equations for the metric vector qµ
and the symmetric and anti-symmetric metric tensors qµqν and qµ ∧ qν [1]
and using the tetrad postulate [2] for the vielbein ea

µ. In Sec. 3 the equation
of parallel transport and the geodesic equation [2-4] are written in terms of
the metric four-vector qµ, and the equation of metric compatibility of the
metric four vector shown to be a solution of the geodesic equation. In Sec. 4
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the Poisson equation and the Newtonian equations are derived in the weak
field limit of gravitational theory. In Sec. 5 the second order wave equations
are derived from Eq. (4.5) in various limits for the four known fields of nature.
Finally, Sec. 6 is a discussion of some of the many possible avenues for further
work based on Eq. (4.5) and its classical equivalent given in Ref. [1].

4.2 Derivation Of The Generally Covariant Wave
Equation

The wave equation is based on the following expression for the covariant
d’Alembertian operator:

DρDρ = � +DµΓ ρ
µρ , (4.7)

where
DµΓ ρ

µρ = ∂µΓ ρ
µρ + Γµρ

λ Γ
λ
µρ (4.8)

is the covariant derivative of the index contracted Christoffel symbol Γ ρ
µρ .

Equation (4.7) is derived by first considering the commutator [2] [Dµ, Dν ]
acting on the inverse metric vector qρ [1]:

[Dµ, Dν ]qρ = DµDνq
ρ −DνDµq

ρ

= ∂µ(Dνq
ρ)− Γλ

µν Dλq
ρ + Γ ρ

µσDνq
σ − (µ↔ ν)

= ∂µ∂νq
ρ + (∂µΓ

ρ
νσ )qσ + Γ ρ

νσ ∂µq
σ − Γλ

µν ∂λq
ρ

− Γλ
µν Γ

ρ
λσ q

σ + Γ ρ
µσ ∂νq

σ + Γ ρ
µσ Γ

σ
νλ q

λ − (µ↔ ν)

= (∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + Γ ρ

µλ Γ
λ
νσ − Γ ρ

νλ Γ
λ
µσ )qσ

− 2(Γλ
µν − Γλ

νµ )Dλq
ρ

= Rρ
σµνq

σ − Tλ
µν Dλq

ρ,

(4.9)

where Rρ
σµν is the Riemann tensor and Tλ

µν is the torsion tensor. Consider-
ation of the symmetry of Eq. (4.9), and contracting indices, ρ = σ, leads to
the result

DµDµ = ∂µ∂µ + ∂µΓ ρ
µρ + Γµρ

λ Γ
λ
µρ + 2Γλ

µµDλ. (4.10)

In this expression the Christoffel symbols are defined as [2]

(Γµ)ρ
ρ := Γ ρ

µρ , (Γµ)ρ
λ := Γ ρ

µλ , etc., (4.11)

but, by convention [2], the brackets are omitted in the notation. We follow
this convention in the rest of this paper. For any vector V ν ,

DµV
ν = ∂µV

ν + Γ ν
µλ V

λ. (4.12)
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We therefore can write

DµΓ ρ
µρ = ∂µΓ ρ

µρ + Γµρ
λ Γ

λ
µρ . (4.13)

The covariant d’Alembertian operator is therefore in general

DµDµ = � +DµΓ ρ
µρ + 2Γλ

µµDλ (4.14)

and can be thought of qualitatively as “half the Riemann tensor plus half the
torsion tensor.” This is a geometrical result independent of any considerations
of field theory.

Equation (4.5), the wave equation for the vielbein as eigenfunction,
follows from the tetrad postulate [2]:

Dρe
a
µ = 0, (4.15)

which holds whether or not the connection is metric-compatible or torsion-
free. Differentiating Eq. (4.15) covariantly gives Eq. (4.5):

Dρ(Dρe
a
µ) := DρDρe

a
µ =

(
� +DµΓ ρ

µρ + 2Γλ
µµDλ

)
ea

µ

=
(
� +DµΓ ρ

µρ

)
ea

µ = 0.
(4.16)

Equation (4.16) is therefore a geometrical result which is independent of any
assumptions made concerning the Christoffel symbol and its relation to the
metric tensor [2] or metric vector [1]. The covariant d’Alembertian opera-
tor appearing in the wave equation (4.16) is the sum of the flat spacetime
d’Alembertian � and the term DµΓ ρ

µρ . The latter is identified as scalar cur-
vature (R) because it has the units of inverse square meters and is defined by
an index contraction [2]. The scalar curvature R is obtained conventionally
by contracting indices in the Riemann tensor. Carroll [2], for example, defines
R as follows:

R := qσν(S)Rλ
σλν , (4.17)

where the Ricci tensor is [2]

Rµν := Rλ
µλν (4.18)

and the Riemann tensor with lowered indices is [2]

Rρσµν := q
(S)

ρλ Rλ
σµν . (4.19)

However, Sachs [16] gives a different definition of the Ricci tensor:

Rκρ := qµλ(S)Rµκρλ; (4.20)

so, assuming Eq. (4.19) and contracting indices α = λ:

Rκρ = δλ
λR

λ
κρλ = qµλ(S)q

(S)
µα Rα

κρλ (4.21)
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Comparing Eqs. (4.18) and (4.21), and it is seen that the definition of the
scalar curvature R is a matter of convention, and is not standardized. Dif-
ferent authors give different definitions. Therefore the R that appears in the
Einstein equation with contracted indices, Eq. (4.2), is a matter of conven-
tion. Furthermore, the minus sign that appears in Eq. (4.2) is also a matter
of convention, Einstein himself [4] used the equation in the form R = kT ,
without a minus sign. In the rest of this paper we will use the contemporary
[2] convention R = −kT . The general rule is that the scalar curvature R is
found by a contraction of indices in the Riemann tensor, which has several
well-known symmetry properties [2], for example–it is anti-symmetric in its
last two indices. Using the following choice of index contraction:

R := Rµ
νµν = ∂µΓ

µ
νν − ∂νΓ

µ
µν + Γµ

µν Γ
ν
νν − Γµ

νν Γ
ν
µν , (4.22)

it can be seen that in this convention the scalar curvature is

R := ∂µΓ
µ
νν + Γµ

µν Γ
ν
νν −

(
∂νΓ

µ
µν + Γµ

νν Γ
ν
µν

)
= DµΓ

µ
νν −DνΓ

µ
µν .

(4.23)

Comparing Eqs. (4.16) and (4.23), it is deduced that the scalar curvature

R := −DµΓ ρ
µρ (4.24)

that appears in the definition of the covariant d’Alembertian is, qualitatively,
“half” of the scalar curvature in Eq. (4.3), obtained directly from the Riemann
tensor. This result is consistent with the fact that the covariant d’Alembertian
is, qualitatively (or roughly speaking), half the Riemann plus torsion tensors.
If the Christoffel symbol is assumed to be symmetric in its lower two indices (as
in the convention in standard general relativity [2]) then the scalar curvature R
defined in Eq. (4.24) becomes the second term in Eq. (4.23). If the Christoffel
symbol is anti-symmetric in its lower two indices, as in the definition of the
torsion tensor (Eq. (4.9)), then the second term in Eq. (4.23) is the negative
of the definition appearing in Eq. (4.24). Importantly, however, Eq. (4.16) is
valid whatever the symmetry of the Christoffel symbol, because Eq. (4.16)
is the direct result of the tetrad postulate, Eq. (4.6). Therefore Eq. (4.16)
is true for curved spacetime (gravitation) and twisted or torqued spacetime
(electromagnetism). Using Eq. (4.2), we deduce the wave equation in the form

(� + kT )ea
µ = 0, (4.25)

where
DµΓ ρ

µρ = kT = −R. (4.26)

A less generally valid wave equation can be obtained with the sym-
metric metric tensor of the Einstein field equation [1-4] as eigenfunction. This
wave equation follows from the metric compatibility condition [2]:
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Dρq
(S)

µν = 0. (4.27)

Differentiating Eqs. (4.17) covariantly leads to the wave equation as the eigen
equation:

DρDρq
(S)

µν = (� + kT )q (S)
µν = 0, (4.28)

where q (S)
µν is the eigenfunction. A third type of wave equation can be ob-

tained using the definition [1]

q
(S)

µν = qµqν . (4.29)

Covariant differentiation of products is defined by the Leibniz theorem [2];
therefore the metric compatibility of the symmetric metric tensor, Eq. (4.27),
implies that

Dρ(qµqν) = qµ(Dρqν) + (Dρqµ)qν = 0, (4.30)

for the first derivative, and

D2(qµqν) := (DρDρ)(qµqν)

= qµD
2qν + 2(Dρqµ)(Dρqν) + qνD

2qµ

= 0

(4.31)

for the second derivative. A self consistent solution of Eqs. (4.30) and (4.31)
is

Dµqν = 0, (4.32)

which is a metric compatibility condition for the metric vector qµ. Differenti-
ating Eq. (4.32) covariantly gives the wave equation as an eigenequation with
the metric vector qµ as eigenfunction:

DρDρqµ = (� + kT )qµ = 0. (4.33)

Finally, it may be shown similarly that there exists a wave equation with the
anti-symmetric metric q (A)

µν = qµ ∧ qν as eigenfunction, i.e.:

(� + kT )q (A)
µν = 0. (4.34)

4.3 Fundamental Equations In Terms Of The Metric
Vector

The equation of metric compatibility (4.32) can be derived independently as a
solution of the equation of parallel transport [2] written for the inverse metric
four-vector qµ:

Dqµ

ds
:=

dqµ

ds
+ Γµ

νλ

dxν

ds
qλ = 0, (4.35)
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where dxν/ds is the tangent vector to qµ. Here

(ds)2 = qµqνdxµdxν (4.36)

is the square of the line element in curvilinear coordinates [1]. The geodesic
equation for qµ is

D

ds

(
dqµ

ds

)
= 0. (4.37)

Now use the chain rule [17] if u = f(x, y); then

du

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
; (4.38)

so, if qµ = qµ(xν), then
dqµ

ds
=
∂qµ

∂xν

dxν

ds
. (4.39)

Using Eq. (4.39) in Eq. (4.35), one gets(
∂qµ

∂xν
+ Γµ

νλ q
λ

)
dxν

ds
= 0, (4.40)

i.e.,

(Dνq
µ)
dxν

ds
= 0. (4.41)

In general dxν/ds 6= 0, so Eq. (4.32), the metric compatibility condition for
qµ, is a solution of Eq. (4.41). Therefore the equation of metric compatibility
for qµ can be derived as a solution of the equation of parallel transport for qµ.
The geodesic equation (4.37) follows from the equation of parallel transport
(4.35), so the metric compatibility equation for qµ is a special case of the
geodesic equation for qµ. Using Eq. (4.39), the geodesic equation becomes(

D

ds

(
∂qµ

∂xν

))
∂xν

∂s
+
∂qµ

∂xν

(
D

ds

(
∂xν

∂s

))
= 0. (4.42)

But the geodesic equation can be written for any vector V µ, and so

D

ds

(
dxν

ds

)
= 0. (4.43)

It therefore follows that
D

ds

(
∂qµ

∂xν

)
= 0. (4.44)

As shown in Ref. [1], the gravitation and electromagnetism can be described
from a novel generally covariant field equation for qµ:

Rµ −
1
2
Rqµ = kTµ. (4.45)
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4.4 Derivation Of The Poisson And Newton Equations

The Poisson equation of gravitation can be derived straightforwardly in the
weak field limit [1-4] from the wave equation for an eigenfunction, for example
Eq. (4.33) which can be written as the two equations:

(� + kT )qo = 0, (4.46)

(� + kT )qi = 0, i = 1, 2, 3. (4.47)

Using

� :=
1
c2
∂2

∂t2
−∇2, (4.48)

Eq. (4.46) becomes
∇2qo = kTqo (4.49)

for a quasi-static qo. In the weak-field limit [1-4]:

qo = ε+ ηo = 1 + ηo, ηo � 1, (4.50)

where εµ is the unit four-vector. Therefore Eq. (4.49) becomes

∇2ηo = kTqo ∼ kT. (4.51)

This is the Poisson equation

∇2Φ = 4πGρ (4.52)

if
Φ =

1
2
c2ηo (4.53)

is the gravitational potential, if

ρ = T = m/V (4.54)

is the rest energy density, and if G is Newton’s gravitational constant, related
to Einstein’s constant by:

k = 8πG/c2. (4.55)

Newton’s law, his theory of universal gravitation, and the equivalence
of inertial and gravitational mass are all contained within the metric compat-
ibility condition

∂qµ

∂xν
= −Γµ

νλ q
λ. (4.56)

Multiplying Eq. (4.56) on both sides by qλ and using(
Γµ

ν0 q
0
)
q0 = Γµ

ν0 (q0q0) = Γµ
ν0 ,(

Γµ
ν1 q

1
)
q1 = Γµ

ν1 (q1q1) = −Γµ
ν1 , etc.,

(4.57)
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a unique equation is obtained for the Christoffel symbol in terms of the metric
vector, irrespective or whether or not the metric vector is torsion-free:

Γµ
νo = −qo∂νq

µ, Γµ
νi = qi∂νq

µ, i = 1, 2, 3. (4.58)

(The well-known equation relating the Christoffel symbol to the symmetric
metric tensor is more intricate and less useful, because it is derived on the as-
sumption of a torsion-free metric, i.e., that the Christoffel symbol is symmetric
in its lower two indices. It is:

Γ σ
µν =

1
2
qσρ(S)

(
∂µq

(S)
νρ + ∂νq

(S)
ρµ − ∂ρq

(S)
µν

)
, (4.59)

where qσρ(S) is the inverse of the symmetric metric tensor. The metric tensors
are defined by [2]

qµν(S)q
(S)

νσ = δµ
σ , (4.60)

where

δµ
σ =

1, µ = σ,

0, µ 6= σ,
(4.61)

is the Kronecker delta. In non-Euclidean spacetime, the elements of qµν(S)

and q (S)
µν are not the same in general [2].)
In the Newtonian limit, the particle velocities are much smaller than

c, so [2-4]:
dxi/dτ � dt/dτ ∼ 1. (4.62)

Using the chain rule for the left-hand side of Eq. (4.56), with proper time τ
as an affine parameter [2], we obtain

∂qµ

∂xν
=

dτ

dxν

dqµ

dτ
→ 1

c

dτ

dt

dqµ

dτ
=

1
c

dqµ

dt
. (4.63)

Consider now the identity obtained from the equation of metric compatibility,
Eq. (4.56):

∂qµ

∂xν
:=

∂qµ

∂xν
. (4.64)

Using the chain rule in the weak-field limit, the left-hand side of Eq. (4.64)
becomes

∂qµ

∂xν
→ 1

c

∂qµ

∂t
. (4.65)

If we consider the four-vector defined by

xµ = (x0, x1, x2, x3), (4.66)

then the metric vector is defined by (q0 := qµ(µ = 0), etc.)

q0 =
∂xµ

∂x0
, q1 =

∂xµ

∂x1
, q2 =

∂xµ

∂x2
, q3 =

∂xµ

∂x3
; (4.67)
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therefore the left-hand side of Eq. (4.64) becomes for µ = 0:

1
c

∂q0

∂t
=

1
c2
∂2xν

∂t2
(4.68)

in the weak-field or Newtonian limit. In this limit the metric can be considered
as a perturbation of the flat spacetime metric [2]:

q0 =
(

1− 1
2
η0

)
∼ 1. (4.69)

The gravitational field in the Newtonian limit is quasi-static, and the position
vector is dominated by its time-like component, so

∂q0

∂xν
→ −1

2
∂η0

∂xν
. (4.70)

Equating left-hand and right-hand sides of the identity (4.64), gives, in the
Newtonian approximation,

d2xi

dt2
= −c

2

2
∂η0

∂xi
, (4.71)

which is Newton’s second law combined with the Newtonian theory of uni-
versal gravitation. It is seen that the equivalence of gravitational and inertial
mass implied by Eq. (4.71) is a consequence of geometrical identity (4.64).
This is a powerful and original result, obtained from the novel equation of
metric compatibility (4.56).

Using the definition (4.53) for the Newtonian potential Φ, Eq. (4.71)
can be written in the familiar form

d2r

dt2
= −∇Φ, (4.72)

which is equivalent to the inverse square law of Newton

F = m
d2r

dt2
= −GmM

r2
k. (4.73)

From Eq. (4.56) with µ = 0, it can be seen that Eq. (4.72) can be expressed
as one Christoffel symbol:

∂q0

∂xν
= −Γ 0

ν0 q
0 ∼ −Γ 0

ν0 , (4.74)

an equation which shows that the equivalence of gravitational and inertial
mass is a geometrical result, the equation of metric compatibility, (4.56),
which also leads to the generally covariant wave equation (4.33), and self-
consistently, to the Poisson Eq. (4.52) in the Newtonian approximation. If we
write Eq. (4.28) as
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(� + kT )gµν = 0, (4.75)

i.e., using the standard notation gµν = g
(S)

µν for the symmetric metric, the
weak-field or Newtonian approximation gives

(� + km/V ) goo = 0, (4.76)

where T = m/V . If goo is considered to be quasistatic, Eq. (4.76) reduces to

∇2goo = kTgoo. (4.77)

Using the weak field approximation

goo = 1− hoo ∼ 1 (4.78)

for the symmetric metric, we obtain Carroll’s Eq. (4.36) [2] (the Einstein field
equation in the weak-field limit):

∇2hoo = −kTgoo = −kToo, (4.79)

which is the Poisson equation (4.52) with hoo = −c2Φ/2, k = 8πG/c2, Too =
m/V. Therefore the wave equation (4.28) is the eigenequation corresponding
to the classical Einstein field equation. Einstein [4] arrived at the approxima-
tion (4.79) though an intermediate equation (Eq. (4.89b) of Ref. [4]):

�γµν = 2kT ∗
µν , T ∗

µν = Tµν −
1
2
gµνT, (4.80)

in which the metric tensor was approximated by [4]:

gµν = −δµν + γµν . (4.81)

Using the definition
T = gµνTµν , (4.82)

an expression is obtained for Tµν in terms of T :

gµνT = (gµνg
µν)Tµν = 4Tµν . (4.83)

Equation (4.80) can therefore be written as the eigenequation(
� +

1
2
kT

)
gµν = 0, (4.84)

which is the wave quation (4.28) except for a factor (1/2) coming from the
approximation method used by Einstein.

Using the weak-field limit of Eq. (4.33), we obtain

(� + km/V ) q0 = 0, (4.85)
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where T = mc2/V is again the rest energy density. Identifying q0 as a scalar
field [5] identifies Eq. (4.85) as the single-particle wave equation, which af-
ter quantization can be interpreted as the Klein-Gordon equation [5], whose
wavefunction is identified with q0 in the weak-field approximation. The Klein-
Gordon equation is (

� +m2c2/~2
)
q0 = 0, (4.86)

so

E0 = mc2 =
m2c4V

~2k
. (4.87)

Equation (4.87) can be identified as the Planck/de Broglie postulate for any
particle:

E0 = ~ω0 = mc2, (4.88)

where ω0 is the rest frequency of any particle. The rest frequency is defined
by

ω0 = 8πc`2/V, (4.89)

where
` = (G~/c3)1/2 (4.90)

is the Planck length. Equation (4.87) means that the product of the rest mass
m and the rest volume V of any particle is a universal constant

mV = ~2k/c2, (4.91)

which is an important result of the generally covariant wave equation.
Using the operator equivalence of quantum mechanics [5]

pµ = i~∂µ,

pµ = (En/c,p), ∂µ =
(

1
c

∂

∂t
,−∇

)
, (4.92)

Eq. (4.86) becomes Einstein’s equation of special relativity:

pµpµ =
En2

c2
− p2 = m2c2, (4.93)

in which En denotes the total energy (kinetic plus potential) and mc2 is the
rest energy. From the equation [18]

F = γmv̇ = ṗ, (4.94)

where p = γmv is the momentum in the limit of special relativity (weak-field
limit), an expression is obtained for the kinetic energy in special relativity:

T = mc2(γ − 1). (4.95)

In the non-relativistic limit v � c, the Newtonian kinetic energy
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T =
1
2
mv2 (4.96)

is obtained from the second Newton law, Eq. (4.73), which is self-consistently
the non-relativistic weak-field limit of Eq. (4.33). Using the operator equiva-
lence (4.92) in Eq. (4.96) gives the time-dependent free-particle Schrödinger
equation [5,19]:

i~
∂q0
∂t

= −~2∇2

2m
q0. (4.97)

Identifying the Hamiltonian operator as

H = −~2∇2

2m
(4.98)

transforms Eq. (4.97) into the time-independent free-particle Schrödinger
equation

Hq0 = Tq0, (4.99)

which is a weak-field approximation to the wave equation (4.33) when we
consider kinetic energy only [5]. The wavefunction of the Schrödinger equation
(4.99) is [19]

q0 = 1 +AeiKZ +Be−iKZ , (4.100)

which is the time-like component of the metric eigenfunction of Eq. (4.33) in
the weak-field approximation used to recover Eq. (4.99).

These methods illustrate that wave or quantum mechanics can be con-
sidered to be an outcome of general relativity, and that the wave-function can
be considered to be a deterministic property of general relativity, namely a
metric four-vector, a metric tensor, or most generally a vielbein.

The first Newton law is obtained in the weak-field limit of the geo-
desic equation, or alternatively when the Christoffel symbol Γ 0

ν0 in Eq. (4.74)
vanishes. These limits correspond to the flat spacetime in which there is no
acceleration. Newton’s law is contained within the conservation law for qµ.
The latter can be deduced from the Bianchi identity [2]

DµGµν := 0, (4.101)

where
Gµν = Rµν −

1
2
Rgµν (4.102)

is the Einstein tensor. Noether’s theorem gives the energy conservation law

DµTµν = 0, (4.103)

and the metric compatibility assumption of standard general relativity [2] is

Dρgµν = 0. (4.104)

If we define [1]
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Rµν := Rµqν , Tµν := Tµqν , gµν = qµqν , (4.105)

then the Bianchi identity (4.101) becomes

DµGµν = (DµRµ)qν +Rµ(Dµqν)

− 1
2RqµD

µqν − 1
2D

µ(Rqµ)qν

:= 0.

(4.106)

Using the metric compatibility assumption for qν , Eq. (4.32), gives the result

DµGµ = 0, Gµ := Rµ −
1
2
Rqµ. (4.107)

This is the Bianchi identity for the field tensor:

Gµ = kTµ. (4.108)

Using Eq. (4.103) and the Leibniz theorem, the energy conservation law be-
comes

Dµ(Tµqν) = (DµTµ)qν + Tµ(Dµqν)

= (DµTµ)qν = 0,
(4.109)

and the energy conservation law for Tµ is deduced to be

DµTµ = 0. (4.110)

The unified field equation (4.45) [1] becomes

Dµ(Gµ − kTµ) := 0. (4.111)

Using the equations [1]:

Rµ =
1
4
Rqµ, (4.112)

both the energy conservation law (4.110) and the Bianchi identity (4.107) can
be expressed as the equation(

Dµ +
1
R
DµR

)
qµ = 0. (4.113)

4.5 Some Fundamental Equations Of Physics Derived
From The Wave Equation

Equation (4.113) is similar in structure to a gauge transformation equation in
generic gauge field theory [2,5,7-12]. On using the results [2]
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DµR = ∂µR, (4.114)

Dµq
µ = ∂µq

µ + Γµ
µλ q

λ = 1√
|q|
∂µ(
√
|q|qµ),

= ∂µq
µ +

(
1√
|q|
∂µ

√
|q|
)
qµ,

(4.115)

where |q| is the modulus of the determinant of the symmetric metric gµν :=
qµqν , Eq. (4.113) becomes(

∂µ +
1√
|q|
∂µ

√
|q|+ 1

R
∂µR

)
qµ = 0, (4.116)

a result which has been generated by the Leibniz theorem [2]

Dµ(Rqµ) = (DµR)qµ +R(Dµq
µ) = 0. (4.117)

Now consider the definition of gauge transformation in generic gauge field
theory [5]:

ψ′ = Sψ (4.118)

where ψ is the generic (n-dimensional) gauge field and S the rotation generator
in n dimensions. Application of the Leibniz theorem produces

Dµ(Sψ) = (DµS)ψ + S(Dµψ). (4.119)

The covariant derivative in generic gauge field theory is defined through a
vielbein [2], the generic gauge potential Aa

µ, and a factor g (denoting generic
charge):

Dµ := ∂µ − igAµ, Aµ := maAa
µ; (4.120)

and the gauge transformation (4.118) implies that

A′
µ = Aµ −

i

gS
∂µS, (4.121)

i.e.,

igA′
µ = igAµ +

1
S
∂µS. (4.122)

The factor −i in Eq. (4.120) originates in the fact that the gauge group genera-
tors ma in generic gauge field theory are defined as imaginary-valued matrices.
This procedure defines the upper index a of the vielbein Aa

µ [2]. However, a
basis can always be found for the gauge group generators such that Eq. (4.120)
becomes

Dµ = ∂µ + gAµ. (4.123)

Comparing Eqs. (4.123) and (4.116),

Aµ =
1
g
· 1
R
∂µR =

~
e
· 1
R
∂µR = B(0)∂µR, (4.124)
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where ~/e is the elementary unit of magnetic flux (the fluxon) and where B(0)

is a magnetic flux density. Equation (4.124) combines the operator equivalence
(4.92) of quantum mechanics with the minimal prescription (pµ = eAµ) in
generic gauge field theory, giving the result

pµ = eAµ = i~∂µ. (4.125)

This result has been obtained from the wave equation (4.33) and the Bianchi
identity (4.107) in general relativity. Comparison of Eqs. (4.117) and (4.119)
shows that the scalar curvature R = −kT in general relativity plays the role
of the rotation generator S in generic gauge field theory, and that the metric
qµ plays the role of the generic field Aµ or potential. The field can be a scalar
field as in the single particle wave equation, Klein-Gordon, and Schrödinger
equations (Sec. 4), but can also be a spinor, as in the Dirac equation, and a
four-vector as in the Proca, d’Alembert, and Poisson equations of electrody-
namics. In gravitation it has been shown in previous sections that the field can
be a four-vector, a symmetric and anti-symmetric tensor and, most generally,
a vielbein [2]. In O(3) electrodynamics [7-12] the field or potential (Feynman’s
“universal influence” [5]) is the vielbein Aa

µ, where the upper index denotes
the Euclidean [2] complex circular basis ((1),(2),(3)) needed for the description
of circular polarization in radiation. The lower index denotes non-Euclidean
spacetime in general relativity. The upper index a is a basis for the tangent
bundle of general relativity; and if we now make the ansatz

Aa
µ = A(0)qa

µ = A(0)ea
µ, (4.126)

we identify the internal index of a the field or potential or “universal influ-
ence” in gauge field theory with the basis index of the tangent space [2] in
general relativity. This identification is the key to field unification in the new
wave equation (4.25). In other words field unification is achieved by choosing
the eigenfunction of the wave equation to represent the different fields that
are presently thought to exist in nature: scalar fields, vector fields, symmetric
or anti-symmetric tensor fields, spinor fields, and most generally, vielbeins.
The weak field is a vielbein whose SU(2) internal index describes the three
massive weak field bosons [5], and the strong field is a vielbein whose SU(3)
internal index represents gluons. The internal index of the weak field there-
fore represents a physical tangent space of general relativity whose structure
group is SU(2), homomorphic with the structure group O(3) of O(3) electro-
dynamics [7-12]. The fiber bundle for both fields is therefore identified with
the tangent bundle. In O(3) electrodynamics the fibers are tied together with
rotations in three dimensions represented by the structure group SO(3) and
the field is defined on this tangent or fiber bundle by the vielbein Aa

µ. In weak
field theory precisely the same procedure is followed, but the structure group
becomes SU(2) and the field becomes the vielbein W a

µ whose three internal
indices represent the three massive weak field bosons. In strong field theory the
structure group is SU(3) and the vielbein becomes Sa

µ , where there are eight
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indices a [5]. The ansatz (4.126) therefore implies that the massive bosons of
the weak field and the gluons of the strong field are different manifestations of
the photons with indices (1), (2), and (3) of O(3) electrodynamics. The O(3)
photons, the weak field bosons and the gluons are described by Eq. (4.25)
in which the eigenfunctions are respectively Aa

µ,W
a
µ , and Sa

µ , i.e., by the
three wave equations of general relativity

(� + kT )Aa
µ = 0, (4.127)

(� + kT )W a
µ = 0, (4.128)

(� + kT )Sa
µ = 0. (4.129)

In other words, the internal indices of the O(3), weak and strong fields are
different representations of the basis used to represent the tangent space in
general relativity. The O(3) electromagnetic field is represented by a vielbein
in which the tangent space is defined in the O(3) symmetry complex circular
basis ((1),(2),(3)) [7-12]. This basis for the vielbein of the weak field becomes
the three SU(2) matrices (Pauli matrices), and there are eight SU(3) symme-
try matrices (geometrical generalizations [5] of the three complex two by two
Pauli matrices to eight complex three by three matrices). These different basis
representations are all representations of the same physical tangent space in
general relativity.

In the currently accepted convention of the standard model and grand
unified field theory the electromagnetic sector is represented by the field or
potential Aµ in which there is no internal index, and the abstract fiber bun-
dle of gauge field theory is not identified with the physical tangent bundle of
general relativity. Consequently the standard model suffers from the inconsis-
tencies described in the introduction, the most serious of these inconsistencies
is that the Principle of General Relativity is not followed in the currently ac-
cepted convention known as “the standard model”–the Principle is applied to
the gravitational field in the standard model but not to the electromagnetic,
weak, and strong fields.

In O(3) electrodynamics the ansatz (4.126) implies that

Aµ = A(0)qµ =
1
g
· 1
R
∂µR (4.130)

(where the scalar magnitude A(0) and the differential operator ∂µ are the same
for all three indices a). If for each index a we assume that

qµ =
ds

dxµ
, (4.131)

then the ansatz (4.126) implies that

s =
1

gA(0)
=

1
κ
. (4.132)
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For each index a the geodesic equation for O(3) electrodynamics [7-12] be-
comes

dκµ

ds
+ Γµ

νσ κ
νκσ = 0, κµ =

dqµ

ds
, (4.133)

an equation which defines the propagation, or path taken in non-Euclidean
spacetime, of the three photons (1), (2), and (3) of O(3) electrodynamics.

The wave equation (4.25) becomes the d’Alembert equation of O(3)
electrodynamics [7-12]

�Aa
µ = − 1

ε0c2
ja

µ (4.134)

if we define the four-current density by the vielbein

ja
µ = c2ε0kTA

a
µ. (4.135)

Equation (4.134) represents three wave equations [7-12], one for each photon
indexed (1), (2), and (3):

�A(1)
µ = − 1

ε0c2 j
(1)

µ , (4.136)

�A(2)
µ = − 1

ε0c2 j
(2)

µ , (4.137)

�A(3)
µ = − 1

ε0c2 j
(3)

µ , (4.138)

two transverse photons, (1) and (2), and one longitudinal (3). These three
equations are evidently equations of general relativity, and are also gravita-
tional wave equations multiplied on each side by the C negative scalar magni-
tude A(0). It follows from the foregoing discussion that these wave equations
are also equations of the weak and strong fields with Aa

µ replaced respectively
by W a

µ and Sa
µ . The weak field limit applied to Eq. (4.127) produces three

Proca equations [5,7-12], one for each photon (i.e., for each index a = (1), (2)
and (3)): (

� +m2c2/~2
)
A

(i)
µ = 0, i = 1, 2, 3, (4.139)

and this procedure also produces the Planck/de Broglie postulate (4.95) ap-
plied to the photon, thus identifying the photon as a particle with mass. In
the limit of electrostatics we obtain from Eq. (4.127) the Poisson equation

∇2A0 = −RA0 = kTA0, (4.140)

which shows that the source of the scalar potential A0 is the scalar curvature
R. This result appears to be an important indication of the fact that elec-
tric current can be obtained from the scalar curvature of the non-Euclidean
spacetime, i.e., electromagnetic energy can be obtained from non-Euclidean
spacetime through devices such as the motionless electromagnetic generator
[12].

The identification of the O(3) electromagnetic field as a vielbein implies
that the unit vectors e(1), e(2), e(3) of the basis described by the upper Latin
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index a of the vielbein are orthonormal vectors of an Euclidean tangent space
to the base manifold (non-Euclidean spacetime) described by the lower Greek
index µ of the vielbein. The unit vectors define the O(3) symmetry cyclic
equations [7-12]:

e(1) × e(2) = ie(3)∗,

e(2) × e(3) = ie(1)∗,

e(3) × e(1) = ie(2)∗,

(4.141)

and can be used to define a tangent at any point p of a curve in the non-
Euclidean spacetime used to define the base manifold. The basis unit vectors
are defined in terms of the Cartesian unit vectors of the tangent space by
[7-12]

e(1) = (1/
√

2)(i− ij),

e(2) = (1/
√

2)(i + ij),

e(3) = k.

(4.142)

It follows that the O(3) electromagnetic field is defined in terms of the metric
vectors:

A(1) = A(0)/
√

2(i− ij)eiφ = A(0)q(1),

A(2) = A(0)/
√

2(i + ij)e−iφ = A(0)q(2),

A(3) = A(0)k = A(0)q(3),

(4.143)

where φ is the electromagnetic phase. The unit vectors e(1) and e(2) can be
thought of as tangent vectors on a circle as illustrated in the following Argand
diagram:

ij//

i OO

�
�

�

e(2)??�����?
?

?

e(1)
__?????

Fig. 4.1. Tangent Vectors

These tangent vectors are vectors of the tangent space to the base manifold.
If we write

q(1)′ = q(2)′ = 1√
2
(i cosφ+ j sinφ),

q(1)′′ = −q(2)′′ = 1√
2
(i sinφ− j cosφ),

(4.144)
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it can be seen in the following diagram that the metric vectors are tangent
vectors that rotate around a circle for any given point Z:

X
______________

Y �
�
�
�
�
�
�
�
�
�
�
�
�
�

q(1)”(φ = π/2)//

q(1)”(φ = π) OO

q(1)”(φ = 3π/2)

oo

q(1)”(φ = 0)

��

q(1)′(φ = π/2)OO

q(1)′(φ = π) oo

q(1)′(φ = 3π/2)

��
q(1)′(φ = 0)//

Fig. 4.2. Rotating Tangent Vectors

As we advance along the Z axis, which defines the unit vector e(3) orthonor-
mal to e(1) and e(2), the path drawn out is a helix, and this is the geodesic
(propagation path) for O(3) radiation.

Having recognized that the O(3) electromagnetic field is defined by
the vielbein in Eq. (4.25), it becomes possible to define scalar-valued compo-
nents of the electromagnetic field (and scalar fields in general) as scalar-valued
vielbein components such as:

q
(1)

X = (1/
√

2)eiφ, q
(1)

Y = −(1/
√

2)eiφ,

q
(2)

X = (1/
√

2)e−iφ, q
(2)

Y = (1/
√

2)e−iφ,

q
(3)

Z = 1.

(4.145)

These scalar-valued vielbein components are components of the tangent-space
vector:

qµ = q
(1)

µe(1) + q
(2)

µe(2) + q
(3)

µe(3), (4.146)

which is defined by the three four-vectors [7-12] in the base manifold q
(1)

µ ,

q
(2)

µ , q(3)µ , one four-vector for each index a = (1), (2) and (3). The compo-
nents of the O(3) electromagnetic field are therefore

A
(1)

µ = A(0)q
(1)

µ , (4.147)

A
(2)

µ = A(0)q
(2)

µ , (4.148)



4.5 Some Fundamental Equations Of Physics Derived From The Wave Equation 85

A
(3)

µ = A(0)q
(3)

µ , (4.149)

two transverse (a = (1) and (2)) and one longitudinal (a = (3)).
The vielbein is well defined object in differential geometry [2] and can

be used, for example, to generalize Riemann geometry through the Maurer-
Cartan structure equations. The close similarity of vielbein theory to gauge
theory is also well understood mathematically [2], but in the currently ac-
cepted convention of the standard model the vielbein has not been used be-
cause the identification of the fiber bundle of gauge field theory is the tangent
bundle of general relativity has not been made. In this section we have iden-
tified the internal index of O(3) electrodynamics with the tangent space of
general relativity by identifying a with the indices (1), (2), and (3). This iden-
tification allows results from vielbein theory and differential geometry to be
used for unified field theory, i.e., both for general relativity and gauge theory.
For example the O(3) gauge field is defined by [2]:

Ga
µν = (dA)a

µν + (ω ∧A)a
µν

= ∂µA
a
ν − ∂νA

a
µ + ωa

µbA
b
ν − ωa

νbA
b
µ,

(4.150)

which is a covariant exterior derivative in differential geometry. In Eq. (4.150)
ωa

µb is a spin affine connection. In gauge field theory the O(3) electromag-
netic gauge field is defined by the gauge-invariant commutator of covariant
derivatives [5,7-12]:

Ga
µν = i

g [Dµ, Dν ] = ∂µA
a
ν − ∂νA

a
µ

+g(Ab
µA

c
ν −Ab

νA
c
µ).

(4.151)

A comparison of Eq. (4.150) and (4.151) defines the spine affine connections
in terms of the O(3) fields or vector potentials:

ω a
µ bA

b
ν − ω a

µ bA
b
µ = g(Ab

µA
c
ν −Ab

νA
c
µ) = gεabcA

b
µA

c
ν . (4.152)

Thus, the field or potential or “universal influence” Aa
µ has been defined in

this section in terms of the scalar curvature in general relativity and also in
terms of the spin affine connections. The gauge field Ga

µν is invariant under
the gauge transformation (4.128); i.e., if

Aµ → Aµ −
i

g

1
S
∂µS, (4.153)

the gauge field is unchanged. This result is true for all four fields. In gravitation
the equivalent of the gauge field is the Riemann tensor, which is covariant
under coordinate transformation, while the Christoffel symbol is not covariant
under coordinate transformation because it is not a tensor [2].

Some powerful results of vielbein theory may be translated directly
into the language of unified field theory developed in this Letter, for example
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O(3) electrodynamics. The first of the Maurer-Cartan structure relations [2]
of differential geometry is

dT a + ωa
b ∧ T b = Ra

b ∧ eb (4.154)

and states that the covariant exterior derivative of the torsion form T a (left
hand side of Eq. (4.154) is the wedge product of the Riemann form Ra

b and
vielbein form eb (right-hand side of Eq. (4.154)). Equation (4.154) is the in-
homogeneous field equation of O(3) electrodynamics:

DµG
µν,a =

1
µ0
jν,a, (4.155)

where the charge-current density vielbein is defined by Eq. (4.135) of this
Section. Equations (4.154) and (4.155) are equations of unified field theory–
the torsion form T a represents electromagnetism (or the weak and strong
fields), and the Riemann form Ra

b represents gravitation. In Ref. (1) the
inhomogeneous equation (4.153) was inferred from Eq. (4.45) by multiplying
it on both sides by the wedge ∧Aµ

ν , and by defining the electromagnetic field
tensor as

Gµν = G(0)(Rµ ∧ qν −
R

2
qµ ∧ qν) (4.156)

and the charge current density as

jν = µ0G
(0)kDµ(Tµ ∧ qν). (4.157)

The gravitational field and Riemann tensor were defined [1] by multiplying the
novel field Eq. (4.45) on both sides by qν , so Eq. (4.45), the classical analogue
of the wave equation (4.25) is an equation of unified field theory.

The second Maurer-Cartan structure relations is the Bianchi identity,
and translates into the Bianchi identity of gravitation [2,5], and also into the
identity (4.107) used in Sec. 4 to derive the gauge invariance equation (4.113).
In O(3) electrodynamics it becomes the homogeneous field equation [1], the
Jacobi identity

DµG̃
µν,a := 0, (4.158)

where G̃µν,a is the dual [5,7-12] of Ga
µν .

The tetrad postulate of vielbein theory, Eq. (4.6), translates into the
O(3) symmetry cyclic relations

∂iq
(1)∗

j = −iκq(2)
i × q

(3)
j ,

∂iq
(2)∗

j = −iκq(3)
i × q

(1)
j ,

∂iq
(3)∗

i = −iκq(1)
i × q

(2)
j

(4.159)

between space indices of the base manifold (µ = i = 1, 2, 3).
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In this section the O(3) electromagnetic gauge field has been identi-
fied in three different ways: Eqs. (4.150), (4.151), and (4.156). Self-consistency
demands that these three definitions by the same, giving Eq. (4.152), for exam-
ple. This equation relates the spin affine connection and the vector potential.
Comparing equations (4.151) and (4.156) gives the important result

G(0)

(
Rµ ∧ qν −

R

2
qµ ∧ qν

)
= ∂µA

a
ν − ∂νA

a
µ + gεabcA

b
µA

c
µ, (4.160)

which indicates that the group structure of generally covariant electrodynam-
ics is non-Abelian and that generally covariant electrodynamics must be a
gauge field theory with an internal gauge group such as O(3), of higher sym-
metry than the conventional U(1) of the standard model. The wedge product
Rµ ∧ qν is accordingly identified as

Rµ ∧ qν =
1

G(0)

(
∂µA

a
ν − ∂νA

a
µ

)
(4.161)

and the wedge product qµ ∧ qν as

R

2
qµ ∧ qν = − g

G(0)
εabcA

b
µA

c
ν . (4.162)

If electrodynamics were a U(1) Abelian theory, then the wedge product qµ∧qν
would be zero:

qµ ∧ qν = qµqν − qνqµ = 0. (4.163)

The electromagnetic field would then disappear because [1]

Rµ =
1
4
Rqµ. (4.164)

The tetrad postulate in U(1) symmetry gauge field theory would reduce to

Dµqν = (∂µ − igAµ)qν = (∂µ − igA(0)qµ)qν = 0. (4.165)

The U(1) gauge field would then be

Gµν = ∂µAν − ∂νAµ = igA(0)2(qµqν − qνqµ) = 0 (4.166)

and would vanish, a result that is self consistent with Eq. (4.164). It is con-
cluded that general relativity implies higher symmetry electrodynamics, a re-
sult that is crucial for the development of a unified field theory.

Finally in this section we use another important result of vielbein the-
ory to derive the Dirac equation from the wave equation (4.25): the vielbein
allows spinors to be developed in non-Abelian spacetime. Each component of
the spinor must obey a Klein-Gordon equation (Ref. [5], p. 45). The Klein-
Gordon equation is obtained from the wave equation (4.25) by considering
the four scalar components of the vielbein (there are four such components
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for each index a). The solutions of the Dirac equation for a particle at rest
are the positive and negative solutions, respectively,

ψ = u(0) exp(−imt), ψ = v(0) exp(imt). (4.167)

The two positive energy and two negative energy spinors in this limit become

u(1)(0) =


1
0
0
0

 , u(2)(0) =


0
1
0
0

 , v(1)(0) =


0
0
1
0

 , v(2)(0) =


0
0
0
1

 ,

(4.168)
and these are identified as components of the vielbein. The Dirac equation
has been obtained from the wave equation (4.25), which uses the vielbein as
eigenfunction.

4.6 Discussion

The key to field unification (unification of general relativity and gauge theory)
in this Letter is the realization that the internal index (fiber bundle index) of
gauge theory is the tangent bundle index of general relativity. Fundamental
geometry shows that this internal index is present in basic relations such as
the one between Cartesian unit vectors in Euclidean spacetime, i× j = k in
cyclic permutation. This internal index is implicitly assumed to exist in every-
day geometry in flat space, but is the key to realizing that the most general
eigenfunction for the wave equation (4.25) must be a vielbein. The unit vec-
tors i, j,k (or e(1), e(2), e(3) of the complex circular basis) are most generally
vielbeins. It follows in generally covariant electrodynamics that the field Aa

µ

is also a vielbein and that the gauge group symmetry of electrodynamics must
be O(3) or higher. The existence of a U(1) gauge field theory is prohibited
by fundamental geometry, because in such a theory the internal index of the
vielbein is missing. This is geometrically incorrect. These results are proven
as follows.

Consider the displacement vector [1,14,15] in the three dimensions of
Euclidean space:

r = Xi + Y j + Zk. (4.169)

The Cartesian unit vectors are

i =
∂r

∂X
/

∣∣∣∣ ∂r

∂X

∣∣∣∣ , j =
∂r

∂Y
/

∣∣∣∣ ∂r

∂Y

∣∣∣∣ , k =
∂r

∂Z
/

∣∣∣∣ ∂r

∂Z

∣∣∣∣ , (4.170)

and the three metric vectors are [1,18,19]

qX = qa(a = 1) =
∣∣ ∂r
∂X

∣∣ i,
qY = qa(a = 2) =

∣∣ ∂r
∂Y

∣∣ j,
qZ = qa(a = 3) =

∣∣ ∂r
∂Z

∣∣k.
(4.171)
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It follows that in Euclidean space that both the unit and metric vector com-
ponents must be labeled with an upper and lower index:

q11 = −1, q12 = 0, q13 = 0,

q21 = 0, q22 = −1, q23 = 0,

q31 = 0, q32 = 0, q33 = −1,

q11 = −i1 = iX = 1, etc.

(4.172)

These results extend to Euclidean spacetime on using the index 0

q00 = 1, q01 = 0, q02 = 0, q03 = 0. (4.173)

Equations (172) and (4.173) define the vielbein qa
µ where a = 0, 1, 2, 3, and

µ = 0, 1, 2, 3. More precisely, the vielbein is a vierbein or tetrad [2] because
there are four internal or tangent space indices a and four indices µ of the
base manifold. If the tetrad is used in the context of general relativity the
a index becomes the tangent space index, and if the tetrad is used in gauge
theory a is the index of the internal space that defines the gauge group.
Therefore fundamental geometry shows that the tetrad can be used both in
general relativity and gauge theory, and this is the key to field unification.

In Ref. [1] it has been shown that both the gravitational and elec-
tromagnetic field originate in Eq. (4.45): if the gravitational field is described
through the symmetric metric tensor qµqν then the electromagnetic field must
be described through the anti-symmetric tensor:

Gµν = G(0)

(
Rµ ∧ qν −

1
2
Rqµ ∧ qν

)
. (4.174)

This is again a result of geometry, essentially the result states that there
exists a dot product between two vectors (symmetric metric tensor qµqν , used
to describe the gravitational field) there must exist a cross product between
the same two vectors (anti-symmetric metric tensor qµ ∧ qν , used to describe
the electromagnetic field). Taking the definition [1]

R = qµν(S)Rµν = qµqνRµqν = −2qµRµ, qνqν = −2, (4.175)

it follows that

Rµ =
1
4
Rqµ, Gµν =

1
4
G(0)R (qµ ∧ qν − 2qµ ∧ qν) (4.176)

and that the electromagnetic field can be written in general as the wedge
product:

Gµν = −1
4
G(0)R(qµ ∧ qν). (4.177)

The minus sign in Eq. (4.177) is a matter of convention and so the electro-
magnetic field can be succinctly expressed, within a factor B(0), as the wedge
product of qµ and qν :
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Gµν = B(0)(qµ ∧ qν), (4.178)

where B(0) has the units of magnetic flux density [7-12]:

B(0) =
1
4
G(0)R. (4.179)

The wedge product of two one forms in differential geometry is defined [2] by

Aµ ∧Bν = (A ∧B)µν = AµBν −AνBµ. (4.180)

Therefore the wedge product vanishes if qµ and qν are considered as four
vectors with no internal index. It follows that electromagnetism cannot be a
gauge theory with no internal index, and therefore cannot be a U(1) gauge
field theory. The wedge product of the two vielbeins qa

µ and qb
ν is

(qa ∧ qb)µν = qa
µq

b
ν − qa

νq
b
µ , (4.181)

and the electromagnetic field is the differential two-form

Gc
µν = B(0)(qa ∧ qb)µν . (4.182)

In differential geometry, the Greek indices become redundant (i.e., can be
assumed implicitly to be always the same on the left and right hand sides of
an equation in differential geometry, the theory of differential forms), so the
Greek indices can be suppressed [2]. Equation (4.182) can therefore be written
as

Gc = B(0)qa ∧ qb, (4.183)

and, within a factor B(0), the electromagnetic field is a torsion two form T c:

Gc = B(0)T c = B(0)qa ∧ qb. (4.184)

The first Maurer-Cartan structure relation (Eq. (4.154)) relates the tor-
sion two form to the Riemann form, and so the first Maurer-Cartan structure
relation becomes a relation between gravitation (Riemann form) and electro-
magnetism (torsion form). By adjusting the index a on the torsion form, the
Maurer-Cartan structure relation becomes one between the weak field and
gravitation, and the strong field and gravitation. This inter-relation between
fields is a result of geometry and of the novel grand unified field theory devel-
oped in this Letter.

In the language of tetrads and wedge products the geometrical equation
i× j = k becomes

(q1 ∧ q2)12 = q11 ∧ q22 = q11q
2
2 − q12q

2
1 = q11q

2
2 = (q3)12 = q33 . (4.185)

in Euclidean spacetime in the Cartesian basis the tetrad is non-zero if and
only if a = µ1 so it has been implicitly assumed that qa

µ can be written
as qµ. This assumption means that the existence of the internal index a in
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basic geometry has been overlooked. In gauge theory this has led to the incor-
rect assumption that there can exist a gauge theory (electromagnetism) with
no internal index. Careful consideration shows however that the unit vectors
i, j,k are the following tetrad components:

−i := (0, q11 , 0, 0), −j := (0, 0, q22 , 0), −k := (0, 0, 0, q33). (4.186)

In a non-Euclidean space (base manifold) defined [1,14,15] by the curvilin-
ear coordinate basis (u1, u2, u3) the unit vectors are the orthonormal tangent
space vectors

ea =
∂r

∂ua
/

∣∣∣∣ ∂r

∂ua

∣∣∣∣ , a = 1, 2, 3, (4.187)

obeying the O(3) cyclic relations

e1 × e2 = e3, et cyclicum, (4.188)

and the metric vectors are

qa =
∂r

∂ua
, a = 1, 2, 3, (4.189)

i.e., the tetrad components

qa
1 = − ∂X

∂ua
, qa

2 = − ∂Y

∂ua
, qa

3 = − ∂Z

∂ua
. (4.190)

The tetrad in four-dimensional spacetime is therefore qa
µ . The upper index

a of the tetrad denotes a flat, orthonormal tangent spacetime, and the lower
index µ the non-Euclidean base manifold (the non-Euclidean spacetime of
general relativity). The structure factors [1] are:

ha = (qa
0q

a0 − qa
1q

a1 − qa
2q

a2 − qa
3q

q3). (4.191)

In general relativity the metric qa
µ always has an upper index a, and a lower

index µ, and the tetrad qa
µ is the eigenfunction of the wave equation (4.25)

of grand unified field theory. It has been demonstrated in this Letter that this
wave equation is the direct result of the tetrad postulate, Eq. (4.6), and so is
the direct result of geometry. More generally, it has also been demonstrated
in this Letter that there must exist an internal index a in all geometrical
relations, such as the relation between Cartesian unit vectors i, j,k.

O(3) electrodynamics [7-12] is therefore Eq. (4.178) when the internal
index a is (1), (2), and (3), and O(3) electrodynamics is the direct result
of general relativity, and of geometry. In other words the very existence of
gravitation is empirical evidence for the existence of O(3) electrodynamics,
because gravitation is described through qa

µq
b
ν and O(3) electrodynamics by

qa
µ ∧ qb

ν . Both fields originate in the classical equation (4.45) [1], which is
the classical limit of the wave equation (4.25). In O(3) electrodynamics the
tetrad postulate (6) becomes the cyclic equations with O(3) symmetry:
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∂µA
(3)∗

ν = −igA(1)
µ ×A

(2)
ν ,

∂µA
(1)∗

ν = −igA(2)
µ ×A

(3)
ν ,

∂µA
(2)∗

ν = −igA(3)
µ ×A

(1)
ν ,

(4.192)

where we have used the relation Aa
µ = A(0)qa

µ . The tetrad postulate (4.6)
shows that:

∂µA
(1)∗

ν − ∂νA
(1)∗

µ = −igA(2)
µ ×A

(3)
ν ,

∂µA
(2)∗

ν − ∂νA
(2)∗

µ = −igA(3)
µ ×A

(1)
ν ,

B
(3)∗

µν = −igA(1)
µ ×A

(2)
ν .

(4.193)

The gauge field in O(3) electrodynamics is defined by the cyclic relations [7-12]

G
(3)∗

µν = ∂µA
(3)∗

ν − ∂νA
(3)∗

µ − igA
(1)

µ ×A
(2)

ν ,

G
(1)∗

µν = ∂µA
(1)∗

ν − ∂νA
(1)∗

µ − igA
(2)

µ ×A
(3)

ν ,

G
(2)∗

µν = ∂µA
(2)∗

ν − ∂νA
(2)∗

µ − igA
(3)

µ ×A
(1)

ν .

(4.194)

But we know from Eq. (4.178) that

G
(3)∗

µν = −iB(0)q
(1)

µ × q
(2)

ν ,

G
(1)∗

µν = −iB(0)q
(2)

µ × q
(3)

ν ,

G
(2)∗

µν = −iB(0)q
(3)

µ × q
(1)

ν ,

(4.195)

so in O(3) electrodynamics there exist the following three fundamental rela-
tions:

gA
(1)

µ ×A
(2)

ν = B(0)q
(1)

µ × q
(2)

ν , et cyclicum. (4.196)

Finally the realization that the electromagnetic field must be a tetrad
allows the description of the internal space by any appropriate index of the
orthonormal tangent space, for example a can be (1),(2),(3) of the complex
circular basis, or it can be (X,Y, Z) of the Cartesian basis. So O(3) electro-
dynamics, or any higher symmetry electrodynamics, can be developed using
any well defined index a of the tangent space of general relativity. This means
that electrodynamics can be developed as an SU(2) symmetry gauge field
theory, or as an SU(3) symmetry gauge field symmetry. This suggests that
the weak and strong fields may both be manifestations of the electromagnetic
field. Essentially, one field is changed into another by changing the index a.
Therefore there emerge many possible inter-relations between fields once it
is realized that the index a is always present in the tetrad qa

µ , i.e., in the
eigenfunction of the wave equation (4.25).
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