
EXPECTATION VALUES OF ELLIPTICAL FUNCTIONS OF x THEORY: . 
APPLICATION TO THE H ATOM. 

by 

M. W. Evans and H. Eckardt, 

Civil List, AlAS, and UPITEC 

(www.webarchive.org.uk, www.aias.us, www.upitec.org., www.et3m.net, 

www .atomicprecision.com) 

ABSTRACT 

It is shown that in general, a three dimensional orbit can be expressed as two 

elliptical functions or planar orbits. In classical gravitational theory and electrostatics the 

elliptical function describes the planar orbit due to an inverse square law of attraction. These 

functions are quantized to give a novel description of expectation values of the H atom and a 

great deal of new information. This method can be extended to any material with 

contemporary methods of computational quantum chemistry. The effect of ubiquitous 

Thomas precession is considered on the H atom and another set of novel results obtained. 

Keywords: ECE theory, x theory, three dimensional orbits, quantization of elliptical 

functions, ubiquitous Thomas precession. 
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1. INTRODUCTION 

In the immediately preceding papers of this series { 1 - 1 0} the x theory of orbits 

has been developed in gravitational theory. Here xis the experimentally observed precessoion 

factor of any planar orbit in astronomy. This planar orbit is one where a mass m orbits a mass 

Min a precessing ellipse. The x theory uses plane polar coordinates and is based directly on 

the experimental data. The precessing elliptical function thus obtained has been used to give 

a straightforward explanation of precisely observable data in astronomy. To date the 

following phenomena have been described with x theory to state of art experimental 

precision: orbital precession, electromagnetic deflection due to gravitation, gravitational time 

delay, relativistic photon velocity, photon mass and the gravitational red shift. In a broader 

context ECE theory has been applied to the cosmological red shift in UFT 49 on 

www.aias.us. The x theory has also provided a definitive refutation of Einsteinian general 

relativity by showing that the latter develops an infinity when it tries to describe orbital 

precession self consistently and when it is compared with the precisely correct x theory. The 

origin of the x factor has been shown to be the ubiquitous Thomas precession, the rotation of 

the Mink:owski metric at a constant angular velocity. The latter has been shown to be the spin 

connection of ECE theory, which is based directly on Cartan geometry. Furthermore, the 

velocity curve and hyperbolic orbits of a spiral galaxy have been shown to be due to the 

underlying ECE theory. In this case the Einstein theory fails catastrophically as is well 

known. While the observed velocity curve goes to a plateau, the Einstein theory goes to zero. 

It is also well known to scholarship that the Einstein theory is riddled with mathematical 

errors, primary among which is the neglect of Cartan torsion. So physics has split within the 

last decade into obsolete and almost completely obscure dogma (the standard model)', and the 

Baconian ECE theory which is a return to the enlightened scientific principles of several 

hundred years. In the immediately preceding paper the x theory was used to forge a new 



quantum mechanics, exemplified by application to the Bohr and Sommerfeld theories of the 

atom in the old quantum theory. The Bohr theory was shown to be the circular limit of the 

elliptical function of x theory that emerges from the classical treatment of an electron 

orbiting a proton in the hydrogen atom. The Bohr radius was shown to be the half right 

latitude and the Bohr energy levels of the H atom shown to be the immediate result of 

vanishing ellipticity. The elliptical function was shown to be a necessary and sufficient 

description of atomic spectra in the non-relativistic old quantum theory. The Sommerfeld 

theory of the atom was the first relativistic quantum theory, and was shown to be due to a 

precessing elliptical function in which xis no longer unity. 

It is well known that the energy levels of the Bohr atom in atomic H are the' 

same as the energy levels of atomic hydrogen in the Schroedinger theory, modem quantum 

mechanics. In order to develop x theory to include the Schroedinger type of quantization it is 

first necessary to consider three dimensional orbits. This is because orbitals are three 

dimensional while orbits are almost always planar. In Section 2 it is shown that any three 

dimensional orbit can be considered in terms of two planar ellipses. Each of these ellipses 

can be quantized using the Schroedinger method to produce two sets of expectation values. 

This is a wholly original procedure that gives a novel characterization of the H atom and in 

consequence all materials using the methods of computational quantum mechanics. These are 

very highly developed as is well known. The H atom is the simplest atom and some of the 

calculations can be carried out analytically. The effect ofthe ubiquitous Thomas precession 

on these novel data sets is considered in the simplest possible way. 

In Section 3, computer algebra is applied to obtain sets of expectation values 

for both types of elliptical function. In general tl;le two elliptical functions_ give completely 

different results and the results are tabulated and discussed. The Thomas precession produces 

interesting relativistic corrections which in future work can be compared with results from 
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the fermion equation. The latter improves the Dirac equation by removing unphysical 

negative energy levels. Both the fermion equation and x theory are obtained from the 

geometrical principles upon which ECE is based directly: the well known principles of 

Cartan geometry. 

2. QUANTIZATION OF THREE DIMENSIONAL ORBITS INTO ORBITALS OF THE H 

ATOM. 

Consider any orbit in three dimensions. The lagrangian in spherical polar 

coordinates is: 
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The format of the Leibniz equation ( \ \ ) is not changed by going from two to three 

dimensions, but the total angular momentum is defined in three dimensions by Eq. ( l J. ). 
It follows that: •• 

and: 
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The Leibniz equation is given via the Binet equations by two ellipses: 
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Therefore a three dimensional orbit can always be analyzed with two planar 

elliptical orbits ofx theory, with x = 1. 

When considering the hydrogen atom both ellipses can be quantized and their 

expectation values computed. For example if the starting classical hamiltonian is defined by 

the plane polar coordinates ( r , f ) then: 
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where the classical kinetic energy is: ) 
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and where the classical potential energy is: 

The solution of Eq. ( ) is the ellipse or more generally the conical section { 11}: 

For the ellipse the half right latitude is: 

and the ellipticity is: 
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where E is the conserved total energy and where L is the conserved total angular momentum: 
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is the spin connection or angular velocity { 1 - 10}. 

The Schroedinger equation is obtained directly from the classical equation ( J \ ) 
usmg: 

wher~s the reduced Planck constant and where + is the wavefunction. So the 

Schroedinger equation is 
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and this is a quantized Leibniz equation. The ellipse ( ":l.\..r) is the solution ofthe classical 

equation so it must also ·be a solution of the quantized equation by the correspondence 

principle that quantized solutions reduce in well defined limits to their classical counterparts. 

There are exceptions to this principle, in that some quantum phenomena such as zero point 

energy do not have a classical counterpart. It follows that a great deal of new information 

about the H atom can be obtained by calculating the expectation values <r>. This is true in 

general, a great deal of new information can be obtained in this way in general for any 

material using the highly developed methods of computational quantum chemistry. The 

expectation values thus obtained would characterize any given atom, molecule or material in 

an entirely new way, so new data banks can be built up. The basis for this development is x 

theory with x = 1. 

The expectation values are: 



In the Bohr theory of the atom: 
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in which the Born normalization is: 

so: 

The Bohr theory (see UFT266 on www.aias.us) corresponds to: 
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where some values ofR"'~ l0are given in Note 267(3), and whcre ilie spherical harmonics Y 
are defined as in previous UFT papers. The integral of any function f over the volume 

element is defined by: 

and the required definite integrals are: 
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and: 

For example the 1 S orbital of atomic hydrogen (H) is defined by: 

0 -
so the wavefunction is: 

This simple calculation illustrates the fact that the normalization must be correctly defined, 

and the code written by Dr. Horst Eckardt used in this paper and in all previous UFT papers 

of this kind checks the normalization for each wavefunction. As shown in UFT266 the Bohr 

atom is obtained directly from the ellipse ()'-\-)in the limit of vanishing ellipticity. The 

ellipse in this limit gives the energy levels and Bohr radii directly, leading to a powerful new 

understanding of quantization. If the above calculation is repeated for the ellipse ( ~\t ) the 
rP 

result is: ) 
( ..(''(f 
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As discussed in Section 3 the same result is obtained for all the hydrogenic wavefunctions for 

the ellipse defmed in the ( r, f ) coor~nates .. 
However, ifthe same procedure is applied to the ellipse: 

\-;_~ 
\-\- f- (oS e -

a completely different set of expectation values emerge. These two sets of expectation values 

can be used to characterize any material and are tabulated in Section 3. Note carefully that in 

the limit of vanishing ellipticity, the expectation value of the 1 S orbital occurs at the Bohr 

radius, and that of the nS orbital at n multiplied by the Bohr radius. 

The effect of ubiquitous Thomas precession is to rotate the Minkowski metri~ at a 

constant angular velocity CV . It appears on all scales and in all situations. In 

gravitational theory the velocity of the Thomas precession is defined by the equivalence 

principle applied to the rotational kinetic energy: ) 

\) ~) ~ 5"'"4' \Yh -~ 
-(~ 

so 
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As shown in UFT265 the rotation of the Minkowski metric causes all planar orbits to precess 

with the experimentally observed x factor, to give the precessing orbit: 
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so when: 

the plane polar coordinates are defined by: ~ 

X -=- < .(t:JS J, 
'/ -=- '( Slnf 

In this case the relevant ellipse to consider is: 

~ 
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and Thomas precession is generated by rotation about the Z axis so that the ellipse ( 58' ) · 
becomes ( ltq ). Note carefully that in some textbooks in mathematics { 12} the opposite 

notation is used as in Note 267(3), with ~ and e interchanged. 

In both the classical gravitational and the classical electrostatic theory of precessing 

planar orbits: 
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In gravitation: (n) 

and in electrostatics: 

The velocity in Eq. ( bb ) is defined by: 
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Therefore in general the ubiquitous Thomas precession causes the Schroedinger 

equation to change from: 
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and develops a new term in L . This term can be thought of as a relativistic correction. 

Since x does not depend on ellipticity, this correction is the same in the Bohr atom, where: 
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is the Bohr radius. The entire structure of computational quantum chemistry is changed by 

the ubiquitous Thomas precession. In Eq. ( lb ). 
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3 Tabular and graphical work on expectation val-

ues

The Schroedinger equation for hydrogen-like orbitals with atomic number Z
reads

− ~2

2m
∇2ψ − Zk

r
= Eψ. (80)

With the product wave function approach (36) for ψ the angular part can be
separated. The eigen values of the spherical harmonics Y (θ, φ) for the angular
Laplace operator Λ2 in spherical coordinates are

Λ2Y (θ, φ) = −l(l + 1)Y (θ, φ) (81)

so that the spherical harmonics in Eq.(80) cancel out. An equation for the radial
part only remains:

− ~2

2m

1

r

∂2

∂r2
(rRnl) +

(
~2

2m

l(l + 1)

r2
− Zk

r

)
Rnl = ERnl. (82)

Introducing the variable

unl = r Rnl (83)

and dividing by Rnl leads to the equation

− ~2

2m

1

unl

∂2unl
∂r2

+
~2

2m

l(l + 1)

r2
− Zk

r
= E. (84)

By re-introducing the radial part of the classical kinetic energy Ek and the
classical angular momentum

L2 = ~2 l(l + 1) (85)
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Eq.(84) can be written

Ek +
L2

2mr2
− Zk

r
= E (86)

with

Ek =
1

2
mv2r = − ~2

2m

1

unl

∂2unl
∂r2

. (87)

It follows that v2r can be expressed by the radial functions in the form

v2r = − ~2

m2

1

unl

∂2unl
∂r2

. (88)

This represents a classical electron velocity in the framework of quantum me-
chanics, a novel result. The velocities are dependent on the (n, l) quantum
numbers and listed in Table 1. Besides a constant term, there are contributions
of inverse powers of r, growing with quantum number l. The results are graphed
in Fig. 1. For the s orbitals, velocities are highest near to the core, a result
which is consistent with the probability distribution of wave functions. For p
and d orbitals, velocities start at some distance from the core.

Next we consider the expectation values of the elliptic radius derived from
hydrogenic orbitals, see Eq.(31). As explained in section 2, we have two possi-
bilities of symmetrically placing the elliptic orbits in a 3D coordinate system:
in the φ plane and in the θ plane. Placing the ellipse in the φ plane gives the
result

〈r〉 =
a0√

1− ε2
(89)

with a0 being the Bohr radius. This expectation value is the same for all quan-
tum numbers (n, l,ml). The reason is that the spherical harmonics depend on φ
only by a phase factor exp(iml φ) which is the same for all spherical harmonics.

Putting the ellipse into the θ plane gives quite di�erent results. They now
depend on the quantum numbers and give logarithmic expressions, independent
of principal quantum number n, because the spherical harmonics do not depend
on n. The results are presented in Table 2. The r expectation values are graphed
in dependence of ellipticity ε which they depend on. In Fig. 2 the curves for
l = 0 and l = 1 are shown, together with the result (89) for the φ orbit. We
see that 〈r〉 for the φ orbit is very similar to that of the θ orbit for l = 0. The
expectation values grow signi�cantly for ε approaching unity, i.e. the ellipse
passing into a parabola. In Fig. 3 this is shown for d orbitals. The e�ect is
always more signi�cant the lower the quantum number ml is.

Finally we investigated 〈r〉 for precessing ellipses according to Eq.(74). The
expectation values then contain expressions like∫

sin(θ)

cos(xθ) + 1
dθ (90)

which are not analytically integrable because the arguments of the trigonometric
functions di�er. Only for the φ ellipse an analytical result is obtained:

〈r〉 =
a0

π x
√

1− ε2
atan

( √
1− ε2 sin (2π x)

(ε+ 1) cos (2π x) + ε+ 1

)
. (91)
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n l v2r ·m2/~2

1 0 2Z
a0 r
− Z2

a20

2 0 2Z
a0 r
− Z2

4 a20

2 1 − Z2

4 a20
+ 2Z

a0 r
− 2

r2

3 0 2Z
a0 r
− Z2

9 a20

3 1 − Z2

9 a20
+ 2Z

a0 r
− 2

r2

3 2 − Z2

9 a20
+ 2Z

a0 r
− 6

r2

Table 1: Squared orbital velocities v2r in unts of ~2/m2 for di�erent quantum
numbers.

l m 〈r〉
0 0 a0

2 ε (log (ε+ 1)− log (1− ε))
1 0 3 a0

2 ε3 (log (ε+ 1)− 2 ε− log (1− ε))
1 1 3 a0

4 ε3

((
ε2 − 1

)
log (ε+ 1) + log (1− ε)

(
1− ε2

)
+ 2 ε

)
2 0 5 a0

8 ε5

(
ε2 − 3

) ((
ε2 − 3

)
log (ε+ 1) + log (1− ε)

(
3− ε2

)
+ 6 ε

)
2 1 5 a0

4 ε5

(
3
(
ε2 − 1

)
log (ε+ 1)− 4 ε3 + 3 log (1− ε)

(
1− ε2

)
+ 6 ε

)
2 2 5 a0

16 ε5

((
3 ε4 − 6 ε2 + 3

)
log (ε+ 1) + log (1− ε)

(
−3 ε4 + 6 ε2 − 3

)
+ 10 ε3 − 6 ε

)
Table 2: Expectation values of r for an ellipse in θ direction (X-Z plane).

For the θ orbits the integrals are not solvable analytically and must be evaluated
numerically.
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Figure 1: Velocity vr(r) for n and l quantum numbers.

Figure 2: Expectation values of r for φ orbit and some θ orbits.
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Figure 3: Expectation values of r for some more θ orbits (l = 2).
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