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The parton structure of elementary particles such as the electron, proton and 

neutron is developed using a constrained Schroedinger equation deduced from the Beltrami 

equation for linear momentum. The constraint is a direct result of the geometry of the 

Beltrami equation, which is an example of the geometrically based ECE theory. Using the 

conservation of total energy E, a differential equation is obtained in potential energy V, which 

is used in the Schreodinger equation to evaluate the energy levels and wavefunctions ofthe 

elementary particle. Partons are the result of the wavefunctions. 
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1. INTRODUCTION 

Recent papers in this series { 1 - 10} have produced a vectorial format of the. 

Cartan identity and a geometrical theory of charge current density. The Beltrami formalism 

has been incorporated into ECE theory and in Section 2 of this paper the Beltrami equation 

for linear momentum pis considered. Using the quantum postulate the Beltrami equation is 

developed into a Schroedinger equation with a constraint, a cubic equation in V - E, where V 

is the potential energy and where E is the total energy. Using the conservation of total energy 

E, this equation is reduced to a differential equation in V, and V is used in the Schroedinger 

equation to find the wavefunctions and energy levels of the interior structure of an elementary 

particle such as an electron, proton or neutron. Therefore it is assumed that the interior 

structure of an elementary particle is governed by a Beltrami equation in linear momentum p. 

This is the starting hypothesis, chosen because the Beltrami equation leads to the powerful 

Schroedinger equation or inhomogeneous Helmholtz equation. In this series of two hundred 

and sixty papers to date, nearly all the precepts of the standard model have been refuted, so 

the quark gluon model is rejected on the grounds that it is a meaningless curve fitting exercise 

based on nineteen adjustables and many errors and obscurities {1 - 10}. Background notes 

one to five accompanying UFT260 on www.aias.us lead in to Section 2, and should be read as 

part of the paper. These notes deal with absence of curvature in the vacuum, the Beltrami 

structure of various quantities in the absence of a magnetic monopole, the conditions under 

which the tetrad is a Beltrami function, spherical solutions of the Helmholtz equation and the 

basic equation of matter in terms of the tetrad. These notes deal with the homogeneous 

Helmholtz equation, but in order to develop a parton theory the Schroedinger equation is 

needed. The Beltrami condition on linear momentum constrains the Schroedinger equation in 

such a way as to produce a rich internal structure, containing as much information as the 
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quark model, but with only one parameter c~mpared with nineteen, and with complete 

absence of obscurity. 

2 DERIVATION OF THE CONSTRAINED SCHROEDINGER EQUATION 

Consider the Beltrami equation in linear momentum: 

- -
where in general '\-{ depends on coordinates and is not a constant. From Eq. ( \ ) 

'S!_ 'A (' q_ ~ f_) , <'! '~<- ( YLf) - l ~) 

By vector analysis Eq. ( d.. ) can be developed as: 

'1l~·f_)-'1Jf - ~~f 

so: 

One possible solution is: 

and: . - (!) 

Eq. ( b ) implies: 



f . ~ ( "!__ • f) ~ f . i ~'\ X 1 ~ O - (-,) 

-
Two possible solutions of Eq ( f · ) are: 

5L·f- o -CO 
-

and: 

q ( '1 . 1) : _Q_ • - ( ") 

Now use the quantum postulate: 

and the Schroedinger equation is D- lV J 
( 'J')-\--Y<-"))1 -=-- 0. -(\~) 

From Eq. ( \ ";) ): '2-(l~')~~J)f) ~2- -(t-3) 

(~')i--\~"))'1-~ -\- ('l("'J*'Y'(J))f ~E._ 
. -(tlr) 

a possible solution of which is: 

L e. 

-=- 0 -
and 
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Eq. ( \b ) is Eq. ( \\ ) Q.E.D. Eq. ( \ b ) can be written as: 

'i 'G J 1 -\- 'l \1{ ) f '"- 0, - ( t:) 
I.e. 

( 
~ ') ,./, ) - 0 - ( l 'g\ 

"' :;;::; f-r\<T --. ') 
-

A possible solution of Eq. ( \ '&Gs ~e S;o:~e)e~tion""- O . - c l:) 
So the Schroedinger equation is compatible with Eq. ( \\ ). 

Eq. ( b' ) gives: 

which is consistent with Eq. ( \ '\ ) only if: 

Eq. ( "\ ) gives: 

where: 

'l("~*) ~ _Q_ -(-:1:>.) 

\}")+ ~ ~\"~f· -C~) 
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and: 

Therefore: 

from a comparison ofEqs. ( \ ~ ) and ( -:J~ ) . we obtam the subsidiary condition· 

'J J J "") -=> c,· I~ 
\'( 'J \~ = 5L \c. . ']__ '<c + K - L :.T1) 

where: 

KJ ~ ~(v-~} -(~~ 

Q \-( J .,_ ~}h <g__ 'I -l ~"\\ 
{:' ) 

Therefore: 

"") vc J ""-- ~VI- <(]) "'\T - c~6' 
·. t") . ~ 

and 

(;;~n~))bi~cor_nt~;ti;/(v;-1:\ t f 1 ('IV. 'l v\ = 0 

~~ ) ~"" ") -( 1\) 



This can be written as a cubic equation in E, which is a constant. E is expressed 

in terms ofV, (/'\[,and 'J ).V Using: -
--

gives a differential equation in V which can be solved numerically, giving an expression for 

V. Finally this expression for Vis used in the Schroedinger equation: 

wavefunctions of the interior parton structure of an elementary particle such as an electron, 

proton or neutron. The well developed methods of computational quantum mechanics can be 

used to find the expectation values of any property and can be applied to scattering theory, 

notably deep inelastic electron electron, electron proton and electron neutron scattering. 

These data are claimed to provide evidence for quark structure, but the quark model depends 

on the validity of the U ( 1) and electro weak sectors of the standard model. In this series of 

papers these sector theories have been refuted in many ways. 

3. COMPUTATIONAL RESULTS 

Section by Dr. Horst Eckardt. 
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2 Corrections to section 2

... we obtain the subsidiary condition:

∇2κ2 = κ4 (27)

... giving a quadratic equation in V − E:

∇2 (V − E) =
2m

~2
(V − E)

2
(31)

(
− ~2

2m
∇2 + V

)
ψ = E ψ (33)

3 Numerical solution of the constraint Schroedinger

equation

3.1 Solution of the constraint equation (27)

In this section a numerical solution of the constraint Schroedinger equation (33)
is developed. The potential is obtained from the constraint equation (27) or
(31), respectively. We choose the form (27) for κ2 which holds for all energies
E so a solution of (27) is universal in E. For the electron it is known that there
is no angular dependence of the particle charge density. For the proton there is
only a weak angular depence. Therefore we restrict the ∇2 operator in (27) to
the radial part, giving

d2

d r2
κ2 (r) +

2

r

d

d r
κ2 (r) = κ4 (r) (34)
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with

κ2 =
2m (V − E)

~2
(35)

as before. When κ2 is known, the potential is obtainable by

V = E +
~2 κ2

2m
. (36)

In order to simplify Eq.(34) we substitute κ by a new function λ:

λ2(r) := r κ2(r). (37)

This is the same procedure as getting rid of the �rst derivative in the standard
solution procedure for the radial Schroedinger equation. Eq.(34) then reads:

d2

d r2
λ2 (r) =

λ4 (r)

r
. (38)

The initial conditions have to be chosen as follows. Because the radial coordinate
in (37) starts at r = 0, we have to use λ2(0) = 0 to be consistent. For the
derivative of λ2 follows from (37):

dλ2

dr
= κ2 + 2 r

dκ

dr
. (39)

Only the �rst term contributes for r = 0 so that the initial value of κ2 determines
the derivative of λ2 at this point. In total:

λ2(0) = 0, (40)

dλ2

dr
(0) = κ2(0). (41)

If κ2(0) is positive, we obtain only functions with positive curvature for λ2 and
κ2, see Fig. 1. The potential function is always positive and greater than zero,
allowing no bound states. Both functions diverge for large r. Therefore we have
to start with a negative value of κ2(0). Then we obtain a negative region of the
potential function, beginning with a horizontal tangent. This is the same as in
the Woods Saxon potential, a model potential for of atomic nuclei. There is no
singularity at the origin because there is no point charge.

Numerical studies give the result that the solutions λ2 and κ2 are always of
the type shown in Fig. 2. The radial scale is determined by the depth of the
inital value κ2(0). We have chosen this value so large that the radial scale (in
atomic units) is in the range of the radii of elementary particles, see Table 1.
As an artifact, the diverging behaviour for r →∞ found previously remains for
negative initial values of the potential function. Obviously κ2 crosses zero when
the derivative of λ2 has a horizontal tangent (Fig. 2). It would be convenient
to cut the potential at this radius.

3.2 Solution of the radial Schroedinger equation

After having dertermined the potential function κ2 which internally depends on
E, we can solve the radial Schrödinger equation derived from (33):

− ~2

2m

d2

d r2
R(r)− ~2

mr

d

d r
R(r) + V (r) R (r) = E R(r) (42)
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with R being the radial part of the wave function. We substitute R as usual:

P (r) := r R(r) (43)

to obtain the simpli�ed equation

d2

d r2
P (r) =

2m

~2
(V (r)− E) P (r) . (44)

V −E can be replaced by κ2 which is already known from the constraint equa-
tion, so we have

d2

d r2
P (r) =

λ2 P (r)

r
= κ2 P (r) . (45)

Obviously the energy parameter E is subsumed by κ. The computed κ function
is valid for an arbitrary E. Since the left hand side of (45) is a replacement of the
∇2 operator, the Schroedinger equation has been transformed into a Beltrami
equation with variable scalar function κ2 (assuming no divergence of P ). There
is no energy dependence left and the equation can be solved as an ordinary
di�erential equation. This is a linear equation in P so that the result can be
normalized arbitrarily and so can the �nal result R. This is the same again as
for the solution procedure of the Schroedinger equation. Regarding the initial
conditions, P starts at zero as discussed above and its derivative can be chosen
arbitrarily, for example:

P (0) = 0, (46)

dP

dr
(0) = 1. (47)

The results for R, R2 and R2r2 are graphed in Fig. 3. Again the functions have
to be cut at the cut-o� radius of about 2 · 10−5 a.u.

3.3 Comparison with experiments

Experimental values of particle radii are listed in Table 1. The classical electron
radius is calculated from equating the mass energy with the electrostostatic
energy in a sphere and turns out to be simply

re = α2a0 (48)

with α being the �ne structure constant and a0 the Bohr radius. This radius
value is however larger than the proton radius. Therefore a more realistic cal-
culational procedure seems to be scaling the proton radius with the mass ratio
compared to the electron (second row in Table 1). The experimental limits are
even smaller so that the accepted opinion is that the electron is a point par-
ticle which it certainly cannot be in a mathematical sense since there are no
singularities in nature.

The charge density characteristics of proton and neutron are exponentially
decreasing functions. This is not totally identical to the properties obtained for
R2 from our calculation (Fig. 4) which more looks like a Gaussian function.
However, Gaussians have been observed for atomic nuclei containing more than
one proton and neutron.
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Particle charge density characteristic radius [m] radius [a.u.]
electron (classical) delta function 2.82 · 10−15 5.33 · 10−5

electron (derived)a delta function 9.1 · 10−17 1.72 · 10−6

proton (measuerd) neg. exponential function 1.11 · 10−15 2.10 · 10−5

proton (charge radius) neg. exponential function 8.8 · 10−16 1.66 · 10−5

neutron (measuerd) neg. exponential function 1.7 · 10−15 3.21 · 10−5

atomic nuclei Gaussian or Fermi function 2− 8 · 10−15 4− 15 · 10−5

aElectron radius from volume comparison with (mproton/melectron)
1/3

Table 1: Experimental data of elementary particles [1].

There is a diagram in the literature showing the charge densities for the
proton and neutron [1] (replicatred in Fig. 5). The charge densities start with
zero values therefore they seem to describe the e�ective charge in a sphere of
radius r which has to be compared with

ρe = R2 · r2 (49)

of our calculation. This function (with negative sign) has been graphed in Fig.
4 in the range below the cut-o� radius. Since our function is not normalized
the vertical scales di�er. The proton has a shoulder in the charge density which
is not reproduced by our calculation. The neutron is known not to be charge-
neutral over the radius but to have a positive core and a negative outer region.
The negative region which is called "shell" even pertains to the centre in Fig.
5. The shape of the shell is quite conforming to our calculation in Fig. 4. Some
other experimental charge densities of the proton have been derived by Venkat
et al. [2], see Fig. 4 therein. They compare quite well with our results for R2r2,
Fig. 4 of this paper.

As already stated, our calculation does not contain an explicit energy pa-
rameter, therefore we do not obtain a mass spectrum of elementary particles or
partons. The diamater of e�ective charge is de�ned by the initial value of κ2.
For the results shown we had to choose κ2 = −5 · 1010 a.u. which is quite a
lot. The rest energy of the proton is 938 MeV or 3.5 · 107 a.u. which is three
orders of magnitude less. Obviously the potential has to be much deeper than
the (negative) rest energy.

In conclusion, the Beltrami approach of ECE theory leads to a qualitatively
correct desription of the internal structure of elementary particles, in particular
the neutron. The binding energy cannot be determined since it cancels out from
the calculation. It seems that the Beltrami structure is not valid in the boundary
region of elementary particles or partons since the charge density does not go
asymptotically to zero. This can be remedied by de�ning a cut-o� radius where
the radial function has a zero crossing. This was a �rst approach to compute the
interior of elemetary particles (the so-called parton strucutre) by ECE theory.
For future developments more sophisticated approaches have to be found.
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Figure 1: Solution functions of constraint equation (38) for κ2(0) > 0.
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Figure 2: Solution functions of constraint equation (38) for κ2(0) < 0.

Figure 3: Parton solution of the Schroedinger equation.
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Figure 4: Radial wave function −R2 · r2.

Figure 5: Experimental charge densities of elementary particles [1].
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