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ABSTRACT

The N particle gravitational problem is solved analytically in the pairwise

additive approximation. The solution is illustrated for three interacting particles, and Stokes'

Theorem used to introduce the concept of orbital circulation. It is shown numerically that the

orbital circulation is non-zero for all conical sections and precessing conical sections with the

exception of circular orbits. The orbital circulation may therefore be used to characterize all

orbits known in cosmology.
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orbital circulation.
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1. INTRODUCTION 

Recently in this series of papers { 1 - 10} on the applications of ECE theory the 

Einsteinian general relativity (EGR) has been refuted in many ways and replaced by a 

relativity based on the constrained Minkowski metric. In the classical limit of this new 

relativity it has been shown that all the features of planetary precession can be explained 

straightforwardly with the equation of the precessing conical section, and a myriad of new 

properties discovered in terms of the precession constant x. All known orbits in cosmology 

have been shown to be explicable in terms ofx and the equation ofthe precessing conical 

section. In immediately preceding papers the investigation of the classical limit ofthe new 

relativity has been extended to the multi particle gravitational problem, thought to have no 

known analytical solution, and in the preceding paper a new form of Kepler's third law 

i n!Crred for a precessing orbit. 

In Section 2 of this paper it is shown that the N particle gravitational problem 

can be solved analytically in a relatively straightforward way given the usual form ofthe 

st~In ing lagrangian for the problem. This is a four hundred year old problem in cosmology, 

and up to now it has been thought to have only specialized solutions discovered by Euler, 

/ 
Lagrange, Poincare and others. Stokes' Theorem is used to develop the solution for three 

intnacting particles. and a new concept developed of orbital swirl or circulation. In Section 3 

some of the results are illustrated graphically. 

; SOLUTION AND CONCEPT OF ORBITAL CIRCULATION 

Consider three masses interacting simultaneously with the following lagrangian 



This is the standard format of the lagrangian for what is known as the three particle 

~~r<t\ iwtional problem in Newtonian dynamics. Herem are the masses, G is Newton's 

constant, and the coordinates are defined in Fig. ( 1 ). 

The centre of mass of the three particle system is defined to be at the origin of the coordinate 

S\ stem. So: 
0 - (~) 
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Therefore the lagrangian is: 



From Eqs. ( ')_ ) and ( ~ ): 
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Therefore: 

-\- n-..~ (? t ;) Y)., ,__!. (2, • (_!, --
( ~, -\-~"))) 

,;, · ing [q:;. ( \\ ) and ( ·\)) 0 " cives the reduced lagrangian: 



where the reduced mass is: 

1!' •Line poL1r coordinates: 

• '1 

\ ~ \ \ 

. ) 
~~LR-(8\ 
,, \ -y--

Nmv consider the Euler Lagrange equations: 

~ }1 
"' --- --.---

tAt d ~\ 

-
_(n) 

-

\3 ). Ths solution of Eqs. ( \t ) and ( \1 ) is well known { 11} to 

be the elliptical orbit: 

''here J\ is the semi right latitude and f- \ is the eccentricity. Similarly: 

- (t~) 
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and r:L~ ~(~J {<.3 - --,-

'-\ E-3 c~ e.! 
"here: R) (2, ..\- Rl - ()) .... --
This is the same result as in previous work { 1 - 1 0} and obtained with a different method. 

Therefore it follows that the general solution ofthe N particle problem is: 

\ :. 

gi \en the lagrangian ( LS ) extended to N particles. For N masses in a plane the constraint 

( ). \ ) is extended toN masses. For precessing orbits [ 1 - 10 J the general solution is 

) 

''here x . is the precession factor for each orbit. Therefore theN particle gravitational 
\ 

J'l.,lt~km hds been solved for the first time. 

Straightforward application of Stokes' Theorem gives: 

• rs. 
-t 

• -
''here S . is the orbital circulation: 



(. 
..->, ----

From Eq. ( )') 
) in the Newtonian limit: 

R~ _s,·h 9 i - ( Jt) del_ f\ -- cJ_l dei 

su: 

t-~ s;~ 8; - (~) 
s~ - ------{ o.s 9 ; \t f-l 

. , ,1rhit;1l ..:irculation is a lle\\ concept in cosmology and some examples are graphed in 

Section 3. For precessing orbits: 

i1· ,,J:ich the total angular momentum is the constant: 

L 
In genera I for any curve in a plane { 11}: 
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1\ssuming: 

For precessing orbits: 

:c thrcL' !',lrticlc problem: 

-

d~JL) J}} .- - ( 19 
( l-\- f-.- (o S ( :>c,ff.)) ~ 

(~ f- &) . 4f2:t_ 

-(~ 



~~) t!1c circuldtion vectors are additive as follows: . 
~\ ---

pm\ iding the constraint on the solution ( ;}l ): 
f., s<,_e, 
\ + (:I (t15 f} ( 

\\here the eccentricities are: 

~- ' 

and \vhere r( \ are the ti mcs taken for each orbit to transcribe 2'('f' radians. 

The orbital circulation seems to be a new concept of cosmology, and may be used to 

chdracterize every orbit. It is non-zero for every orbit in general. with the exception of a 

circular orbit. For a circular orbit: 

-

f ~. J~ 



In the case oftl1e . I eire e: 
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: ~,·circle is delined b' th, . . - c conical section eq t' ua 1011: 
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3 Graphical illustrations

The orbital circulation S of Eq.(28) is demonstrated in Fig. 1 for three values of
x. This function oscillates between negative and positive values. In Fig. 1 the
elliptic radius r has been added for comparison. It can be seen that S crosses
zero where the ellipse takes its minimum and maximum radial values. This
has been shown in a polar plot in Fig. 2. Since negative values are plotted as
positive values rotated by 180 degrees, two ellipsoidal structures appear for S
in Fig. 2. Obviously S is not symmetric for positive and negative values, the
ellipsoidal structures are distinct.

The circulation integral of Eq.(36) can be solved to be∮
Ri · dRi =

αi
2

2 (1 + εi cos (xi θ))
2 . (58)

This is a positive function and takes its maximum where r(θ) is maximal too,
see Fig. 3.

For hyperbolas, the S function shows poles as graphed in Fig. 4. Corre-
spondingly, the circulation integral approaches in�nity at the same values (Fig.
5). The e�ect of x is to stretch the angular axis in all cases.
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Figure 1: Orbital circulation S for ε = 0.3 and di�erent x values, compared
with elliptic radius r.

Figure 2: Polar plot of orbital circulation S for ε = 0.3, x = 1, compared with
scaled elliptic radius r/4.
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Figure 3: Circulation integral for α = 1, ε = 0.3 and di�erent x values.

Figure 4: Orbital circulation S for a hyperbola with ε = 1.5.
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Figure 5: Circulation integral for a hyperbola with α = 1, ε = 1.5.
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