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ABSTRACT 

The Minkowski metric in a plane is used to develop a theory of all orbits. The 

transition from special to general relativity is considered through use of a Lorentz transform 

with variable velocity v. The only constant of motion in this theory is the hamiltonian, half 

the rest energy of an orbiting object of mass m. Various orbital equations are developed and 

the Newtonian limit considered. The theory is illustrated through its use in orbits of the solar 

system and galaxies. The theory does not predict orbits, but rationalizes them in terms of the 

Minkowski metric, orbits being considered as a constraint on the metric. 
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1. INTRODUCTION 

It is well known that Einstein and others aimed to develop general relativity 

from special relativity, a theory in which one frame of reference moves at a constant velocity 

~with respect to another, the two frames being related by the Lorentz transform { 1 - 11}. 

This paper considers the natural generalization achieved by allowing v to vary in the Lorentz 

transform. The infinitesimal line element of the theory is therefore the line element based on 

the Minkowski metric. In Section 2 this metric is defined in cylindrical polar coordinates in a 

plane, the plane of the orbit. The orbital equation is deduced using the methods of general 

relativity { 11}, methods which are well known, and consist of defining a lagrangian from the 

line element without using the concept of potential energy. The lagrangian is therefore the 

same as the hamiltonian I-I, which is half the rest energy of an orbiting object of mass m. The 

Euler Lagrange equations are used to define the total energy E and the total angular 

momentum L. In the classical dynamics these quantities are constants of motion, but in 

general relativity they depend in general on timet and the radial coordinate r. The 

hamiltonian I-I is not the same as the total energy E in general relativity. The theory developed 

in Section 2 is a special case of general relativity in which the velocity of the Lorentz 

transform is not constant, and which the Minkowski metric is constrained by the orbit being 

described. The orbit introduces a relation between the infinitesimals dr and a 6 , so the 

Minkowski metric is constrained. In Section 3 this theory is compared with general relativity 

in the most general spherical spacetime, and is preferred by Ockham's Razor as a simpler and 

complete description of all orbits. 

2. THE ORBITAL EQUATIONS 

Consider the Minkowski metric in cylindrical polar coordinates: 
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in the plane: 
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Here the coordinates are ( r, ~ ), rt is the proper time, t the time in the observer 

frame , and c the assumed constant speed of light in vacuo. The lagrangian and hamiltonian 

are de fined as in general relativity {1- 10}: 
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The Euler Lagrange equations give the total energy: ") 
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and the total angular momentum: 
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Not that the to tal energy E and the hamiltonian Hare not the same. This is a well known 

feature of general relativity. By definition: 
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so the velocity of the orbiting particle of mass m is: 
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in the observer frame. From Eqs. ( \ ) and ( l ), 
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which is the Lorentz factor. lfv is constant the total energy E is constant, but not otherwise. 

To illustrate this point further consider the most general metric { 11} of spherically symmetri.c 

Herem( r, t) and n( r, t )are both functions of time and of the radial coordinate r. The 

and are the same as for the Minkowski metric, half the rest energy. However the total energy 

from ( \0) is: 

and the total angular momentum from ( \0 ) is: _(tl) J. Jl-
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By definition: 
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!'rom the hamiltonian ( \0 ). Written out in full, the total energy is: 

E = r.- ({,\:)(~((,t) -~ )-'ll _(ts) 

;-md in general is not constant. The hamiltonian, however, is constant. 

With the definitions ( 4- ) and ( 5 ), Eq. ( 3 ) becomes: - (\l\ 
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and can be expressed as: 

where 
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The orbit is considered to be observable by astronomy, ar;d in general is: 

so J:q. ( \ ~ ) is the general orb ital equation for all orbits. Newton's theory of orbits { 12} 

gives the result: 

where E is the classical total ene rgy defined by: 

:l 
-V-L ----- '). 

d.~< 

where Tis the class ical k.inctic energy and Vis the classical potential energy. In Eq. (d~ ) L 
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is the classical total angular momentum. In classical dynamics { 12}, E and Lare constants of 

motion. and there is no concept of rest mass as is well known. In classical dynamics: 

~\ 

the hamiltonian and total energy are the same. In Newtonian dynamics, the potential energy of 

:1ttr~1ct ion between m and M is: 
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where G is Newton's constant. The quantity: 
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comes !rom the rotational kinetic energy but is known incorrectly as the centrifugal "force" of 

re pu ls ion. This is a well known fallacy ofNewtonian dynamics. Accepting this for the sake of 

argument, the Newton theory gives an elliptical orbit: 
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where tl 1 le 1al fright 1 · . atJtude IS: 
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From Eq. ( J.1 ): 
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in which the total . energy IS defined by Eq. ( 4- ). In the limit: 

v !._< c _ (r>) 
the k1.11 t. e IC eneray T b o ecomes: 
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which is the Newtonian result, se lf consistently. In general the Newtonian kinetic energy is 

~ 
11 \l\ ~1 constant unless v is a constant. Eq. ( .) ~ ) may be interpreted as the definition of 

kinet ic energy in a theory in which vis allowed to vary within the Lorentz transform. This is a 

satisfactory theory of relativity for a general v, and so is a theory of general relativity. 

A second orb ital equation may be obtained directly from Eq. ( l ), and is: 
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The relati vist ic linear momentum ofthis theory is: 
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where v varies. In special relativity, Eq. ( ~b ) is also true, but vis a constant. From Eq. 

~(, ) it l'ollows {I - I 0. 12} that: 
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so J:q. ( \~ )may be expressed as: 
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in which: _(3"i) 

so the square of p is: 
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Therefo re the orbital equati on ( 15) is: 
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In the solar system the observed orbit is a precessing ellipse: 
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The orbit is described in terms of the ratio ofp to L 

3. CONSTRAINED MINKOWS Kf METRIC AND APPLICATIONS 

An equivalent method may be developed by noting that: 

where: 
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Using Eq. c ~S) in E . C !\ . · · q J_J produces the constrained Minkow k. l" s I me element: 
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so the vel oc ity is: 

~1m\ is not constant se lf consisten tl y. 

De!i nina the rei t. · · o a IVIStic momentum by: 
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which has the same format as the Einstein energy equation. It may be expressed as: 

hut is considered to be an equation o[ general relativity because vis not constant. If the 

general orbit is defined .by the function: 
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!11 th is reprcsent<1 ti on the genera l orbital equation is: \ {l 

f ( A-LJ. --

From Eq. ( S') ): 

so: 

( 

l ) 4 
\; - t'\... (, 

"') l 
c L 

-(sj 



\ 

Therefore for all orbits: 

A 

These results can~ illustrated for spiral orbits as in Table 1. 

Table 1: Results for Spiral Orbits 

. 
Spiral Orbit dr I d{) A 
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Each orbit is described by the equations: 



L \, 
-- I I' 

(b-:1) C\_':... - - c_L-
) --- -

n.._c_. E. 
·· so that: 

\ \ 
- 'l ) 4-

- \:. - ~ c - - . ---\ol 
'l 

C4.... 
c.-"). L ~ 

In these · - equations the linear relat' . . IVlstlc momentum is· 
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In terms of tl . le ratJO of p to L . . ' vanous orbits can be des .· 
prcccssmg elliptical ·b· . . cnbed as follows. The 

OI 't 's de sen bed by: 

The Jooai·I·tl · · be 1mtc Spira[ 0 ·b· . . ' It IS descnbed by: 



The hyperbolic spiral orbit is described by: 
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Using the orbital equation in the form ( )5 ), the logarithmic spiral orbit is 

clcscribed by: 

and the hyperbo lic spiral by: _(u) 

rn the limit of infinite r thi s equation becomes: 
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i.e. becomes an equation or special relativity in which vis constant. This result can be seen 

from the fact that A for the hyperbolic spiral becomes unity for infinite r. This is exactly what 

is observed experimentally in the well known velocity curve of a whirlpool galaxy, in which 

the sta rs arc arra nged in a hyperbolic spiral. 

Finally, the constrained metric ( \.\ ) may be used to calculate the tetrads, 

torsi on and curvature of Cartan geometry, showing that it is indeed a metric of general 

relativi ty. It is preferred to the n1ore complicated line element ( ~ ) by Ockham's Razor. 
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