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ABSTRACT 

It is shown that the orbital characteristics of a whirlpool galaxy are due to the 

rotational Hooke law, which gives a hyperbolic spiral. This inference should be regarded as a 

first attempt to go beyond line element general relativity, which is now known to be incorrect 

mathematically for all spherical spacetimes. The orbital characteristics of the solar system can 

be expressed as a non linear rotational Hooke law in a well defined approximation. This 

theory is related to the fully relativistic theory of orbits derived in the preceding paper of this 

senes. 
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1. INTRODUCTION 

In recent papers of this series { 1 - 10} it has been shown conclusively that the 

line element general relativity used by Einstein and followed dogmatically for nearly a 

century is trivially incorrect in all spherical spacetimes (UFT 194). This leaves the field 

equations of ECE theory as the only correct method of developing orbital theory within the 

philosophy of relativity. The field equations are developed in the engineering model on 

www.aias.us and other ECE sites. They are very useful in science and engineering but in this 

paper an entirely new method is explored of understanding all orbits in a simple way, using a 

simple law of physics. This effort should be regarded as a first step towards a new 

understanding of cosmology that is not beset by error as in Einsteinian general relativity, or 

by meaningless dogma such as dark matter, and this effort should be regarded as 

complementing the ECE field equations. 

In the previous paper UFT 196 a relativistic theory of orbits was developed 

based on the spin connection and Cartan tetrad. That is a valid method of proceeding, a 

method based on the analytical function of the orbit deduced from astronomy. For example 

the orbit of a planet in the solar system was deduced to be an ellipse by Kepler, using the 

observations of Brahe. Later the ellipse was observed to be precessing, its perihelion moved 

by a tiny amount each year, so the orbit is a precessing ellipse whose analytical function is a 

simple one. Knowing this function the methods ofUFT 196 are used in Section 2 ofthis 

paper to deduce the force law that describes the orbit in a theory of relativity based on the 

spin connection of Cm·tan, a theory that is free of error and dogma. The method can be 

extended to any orbit, and a few examples of spirals are given in this section, spirals that may 

describe whirlpool galaxies. Each has its own force law, so there is no "universal law of 



attraction" as in the Newtonian dogma. 

In Section 3 the rotational Hooke law is introduced and developed in a classical 

context in order to show that the orbit of a whirlpool galaxy can be described by the law in a 

very simple way. This theory can be extended to a fully relativistic one based on the methods 

of UFT 196. It is also shown that the solar system orbits can be expressed as a non linear 

rotational Hooke law. This is a clear way of demonstrating that the orbit is driven by a torque, 

not by a I inear force as in the Newtonian description. The torque is propm1ional to spacetime 

torsion. 

Finally in Section 4, the characteristics of the various relativistic force laws of 

Section 2 are evaluated by computer. 

2. FULLY RELATIVISTIC FORCE LAW FOR VARIOUS ORBITS. 

In UFT 196 it was deduced that the force law for any orbit can be expressed in 

terms of a simple model for the spin connection CJ and a characteristic interval of time 
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from experience in previous papers of this series { 1 - 10}. More realistic models of the spin 



connection are known through the work of Eckardt and Lindstrom. { 1}: Eq. ( :l ) is used for 

of various models of orbits. 
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The precessing ellipse for example is: 
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where l_~ is the right latitude, E the eccentricity, and X the precession constant. 
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Using these equations in Eq. ( ) ) the force law has been evaluated numerically and is 

analysed in Section 4. 

Various other orbits can be analysed similarly. For example the binary pulsar 

can be modelled as an inward spiralling and precessing ellipse: 
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and its force law worked out by computer. There are various kinds of whirlpool galaxy in 



which the stars are thrown out in a spiral pattern, for example in a hyperbolic spiral: 

\ \ e -
The force equation must be constrained in this case by the observation of the velocity curve 

of the galaxy, an observation that shows that the velocity of the stars rises to a constant with 

increasing rand remains constant. This behaviour is non Einsteinian completely, and also 

com pletely non Newtonian . It has been explained however in this series ofECE papers. Ifthe 

velocity is constant there is no force, so this observational constraint means that the force 

must go to zero for large r. This is in turn a constraint on the spin cmmection and 

choracteristic time interval {:) . These matters are discussed further in Section 4. 

The analysis may be repeated for various kinds of spirals, for example the 

logaritlm1ic spiral: 
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the Archimedes spiral: 
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Fermat's spiral: 
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and Euler ' s double spiral: 
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are Fresnel's integrals. A double spiral galaxy may or may not have been observed, but any 

type of galaxy can be modelled functionally and its force law found. 

In this context the rotational Hooke law is: 

where k is a constant and ~s the torque (not to be confused with the torsion). It is seen 

immediately from Eq. ( \ ~ ) that the reason for a spiral pattern of stars is torque in the 

rotational Hooke law, a spiral law. It is an Archimedes spiral with: 
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1n the spiral itselfr is proportional to -8 , in the rotational Hooke law the torque is 

proportional to -0 



3. CLASSICAL ORBITAL THEORY AND THE ROTATIONAL HOOKE LAW. 

J n the classical theory of orbits, the lagrangian is: 
) . 

+ ( e 

and the constant total angular momentum is: 
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1\::; i11 UFT 119 on W\\W.aias.us the magnitude oft01·que may be defined as: 
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will'IT the angular velocity is: 
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Therefore: 

The orbit given by the rotational Hooke law is therefore: 

which is a hyperbolic spiral of the type observed in a whirlpool galaxy of stars. This classical 

analys is shows immediately that torsion is responsible for the pattern of stars in a whirlpool 

galaxy, not Einsteinian relativity, dark matter or Newtonian dynamics. 

-
For the sake of illustration the analysis may be extended to the Newtonian orbit, 

whic h is an ellipse: 
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So the torque from Eq. ( )4--) is: 
~ ( \ t E cos~~ -r - L -----=-~ ~~ J. 

and is not a simple Hooke law. The latter however is derived in a linear approximation 

similar to the law of springs, the original Hooke law. The law of springs is non linear in 

general. For small angles: 
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and for a nearly circular orbit: 

so the torque is approximated by: 
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which is a simple non linear expression in angular displacement . This simple classical 

<malys is can be extended relativistically using the methods ofUFT 196, and is used to show 

that the orbit may be thought of entirely in terms of torque. 

4. NUMERICAL ANALYSIS OF VARIOUS ORBITAL FORCE LAWS 
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4 Numerical analysis of various orbital force laws

The force laws for the orbitals described in section 2 have been evaluated by
computer. The general procedure was as follows:

1. de�ne the orbit r(θ),

2. compute the terms d
dθ

1
r and its second derivative,

3. substitute these terms in Eq.(3),

4. replace the occurences of the θ variable in E.(3) by r by using the de�nition
of r(θ).

This worked in nearly all cases. The results are valid for the spin connection of
the form

ω = −1

r
(29)

(see Eq.(2)) and similar for all orbits except for the binary pulsar.

Solar system

First we investigate the precessing ellipse given by

r =
α

1 + ε cos (x θ)
. (30)

The resulting force is

F = −
((((

c ε2 − c
)
tf + 2α

)
r2 − 2α2 r + α2 c tf

)
x2 + 2α2 r − α2 c tf

)
L2

2α2mr2 (r − c tf )2
(31)
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The curve F (r) is shown for di�erent values of the cosmological parameter tf
in Fig. 1. It can be seen that the occurence of this parameter shifts the force
center from r = 0 to �nite values of r. In Fig. 2 this curve is plotted for tf = 0.6
in a small radius range. There is a pole of F (r). The parameters are chosen as
speci�ed in the �gure captions. The question is which values of tf are realistic
in case of the solar system. We chose the parameters for the earth orbit as

m = 5.9742 · 1024kg,
L = 2.663 · 1040kg m2,

α = 1.4960 · 1011m, (32)

x = 1,

ε = 0.0167.

Fig. 3 shows the resulting absolute values of the gravitational force for various
values of tf . It has to be noted that c tf is the way that light travels in tf
seconds. Since the Newtonian force law works relatively precisely in the solar
system, we can assume that the singularity produced at the sphere with radius
c tf is positioned in the interior of the sun which has a radius of 6.955 · 108m.
Therefore we can estimate

c tf < 6.955 · 108m (33)

or
tf < 2.3s. (34)

This is a quite small value compared to cosmological time scales. The value
might be larger for heavy stars, for example supermassive objects in the center
of galaxies. Therefore a time evolution of the universe could be possible which
increases the gravitational forces, if tf is interpreted in this way. This would
be the prediction of time-varying laws of nature. Since the term c tf comes
from the kinetic energy, it would mean that this energy changes over time,
for example by taking up energy from the background or vacuum �eld. The
singularity, if coming to lie outside of stars, would play the role of a horizon
formerly attributed to black holes which have been shown not to exist.

Binary pulsar

For binary pulsars the orbit is a decreasing pressessing ellipse of the form

r =
α exp(−β θ)
1 + ε cos (x θ)

(35)

where β is a decay constant. In this case it is not possible to substitute θ
completely in the force law. The resulting formula is quite complex:

F = − L2

2α2mr2 (r − c tf )2
(36)

·
( ((

c ε2 − c
)
tf r

2 e2 β θ + 2α r2 eβ θ − 2α2 r + α2 c tf
)
x2

+ (2αβ c tf − 4αβ r)
√
(ε2 r2 − r2) e2 β θ + 2α r eβ θ − α2 x

+
(
2α2 β2 + 2α2

)
r +

(
−α2 β2 − α2

)
c tf

)
.
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In the resulting plot (Fig. 4) it can be seen that there is a common maximum
radius for the force for all tf 's. Above this radius the expression for the force
becomes complex because the square root term becomes imaginary. This may
indicate that there is a maximum radius for a binary pulsar and the orbit is
always shrinking.

Hyperbolic spiral

The hyperbolic spiral is de�ned by

r =
a

θ
(37)

with a characteristic radius a. Application of the above algorithm yields

F = −
(
c tf r

2 + 2 a2 r − a2 c tf
)
L2

2 a2mr2 (r − c tf )2
. (38)

This is a force law of orders 1/r2 to 1/r4. There is no angular dependence. The
graph looks very similar to Figs. 1 and 2.

Logarithmic spiral

The logarithmic spiral is de�ned by an exponential angular dependence

r = r0 exp(βθ) (39)

with a characteristic radius r0. Similarly as for the hyperbolic spiral, the force
law is

F = −
(
β2 + 1

)
(2 r − c tf ) L2

2mr2 (r − c tf )2
. (40)

This is a force law of orders 1/r3 and 1/r4. Again the graph looks very similar
to Figs. 1 and 2.

Archimedes spiral

Another type of spiral is the Archimedes spiral

r = a+ bθ (41)

with characteristic lenght parameters a and b. The calculational method leads
to the force law

F = −
(
2 r3 − c tf r2 + 4 b2 r − 3 b2 c tf

)
L2

2mr4 (r − c tf )2
(42)

which is even up to orders of 1/r6. Nevertheless the graph looks similar to Figs.
1 and 2.
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Fermat's spiral

Similar results hold for Fermat's spiral

r = a
√
θ. (43)

The force law

F = −
(
8 r5 − 4 c tf r

4 + 6 a4 r − 5 a4 c tf
)
L2

8mr6 (r − c tf )2
(44)

is of maximum order 1/r8.

The Lituus

No much di�erent results are obtained for the Lituus

r = a
1√
θ
. (45)

The force law is

F =

(
2 r5 − 3 c tf r

4 − 8 a4 r + 4 a4 c tf
)
L2

8 a4mr2 (r − c tf )2
(46)

and contains a term proportional to r which lets the force raise above zero for
large r values but otherwhere is similar to Figs. 1 and 2 again. The maximum
order of the denominator terms is 1/r6.

Euler's spiral

Finally we investigate Euler' spiral which is interesting because it consists of
two spirals which are connected and the common arm has zero curvature at the
position of point symmetry. Only one of the spirals is shown in Fig. 5. Its
curvature changes linearly with curve length. Euler spirals are also commonly
referred to as spiros, clothoids or Cornu spirals.

In cartesian coordinates the spiral is given in normlized, parametric form by

Sx = x(t) =

∫ t

0

cos
(
s2
)
ds, (47)

Sy = y(t) =

∫ t

0

sin
(
s2
)
ds (48)

where t is a parameter and s an integration variable. The integrals are known as
Fresnel integrals and cannot be solved analytically. There are a series expansion
and some approximative formulas. We use the former:

Sx =

∞∑
n=0

(−1)n t4n+1

(2n)! (4n+ 1)
, (49)

Sy =

∞∑
n=0

(−1)n t4n+3

(2n+ 1)! (4n+ 3)
. (50)
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Since we have to transform the spiral to polar coordinates we shift the coordinate
origin to the center which is a shift of

Sx → Sx −
π

8
, (51)

Sy → Sy −
π

8
. (52)

For small values of t the series converges rapidly but for larger t values, which
corresponds to the inner circular parts, convergence is slow. We needed n = 80
to acheive convergence in the range through t = 5.6 as shown in Fig. 5.

Since the spiral is given numerically we have to evaluate the force law nu-
merically too. First we transform to polar coorcinates:

r =
√
S2
x + S2

y , (53)

θ = arctan
Sy
Sx
. (54)

Then we compute the derivatives which are needed for the force law from the
chain rules

dr

dθ
=
dr

dt

dt

dθ
=
dr

dt

(
dθ

dt

)−1
, (55)

d2r

dθ2
=
d2r

dt2

(
dt

dθ

)2

+
dr

dt

d2t

dθ2
. (56)

The derivatives are computed numerically by the usual discrete di�erence schemes
and inserted in the original force equation (3):

F =

(
2 r (r − c tf )

(
d2

d θ2 r
)
− (4 r − 3 c tf )

(
d
d θ r

)2 − r2 (2 r − c tf )
)
L2

2mr4 (r − c tf )2
. (57)

The force law is graphed in Fig. 6 in polar coordinates, again for four values
of tf . It can be seen that the forces are regular spirals, there is no singularity
in this case. Increasing tf leads to an increase of the force at the the same
angular values. This means, the orbit has a smaller radius for growing tf since
the atrractive force is greater. This is similar in behaviour to the other spiral
types. In total only the binary pulsar behaves di�erent from the ellipse and
various types of spirals.
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Figure 1: Force law for the solar system for di�erent parameters tf with m =
c = α = x = 1, L = 10, ε = 0.1.

Figure 2: Force law for the solar system, radius section near to singularity.
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Figure 3: Force law for the sun-earth system for di�erent parameters tf , loga-
rithmic scales.

Figure 4: Force law for the binary pulsar for di�erent parameters tf with m =
c = α = β = x = 1, L = 10, θ = π/4.
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Figure 5: Normalized Euler spiral with shifted coordinates.

Figure 6: Force law of Euler spiral (absolute values).
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