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CHAPTER FIVE: THE UNIFICATION OF QUANTUM MECHANICS AND 

GENERAL RELATIVITY 

The standard physics has completely failed to unify quantum mechanics and general 

relativity, notably because of indeterminacy, a non Baconian idea introduced at the Solvay 

Conference of 1927. The current attempts ofthe standard physics at unification revolve 

around hugely expensive particle colliders, and these attempts are limited to the unification of 

the electromagnetic and weak and strong nuclear fields, leaving out gravitation completely. 'So 

it is reasonable to infer that the standard physics will never be able to produce a unified field 

theory. In great contrast ECE theory has succeeded with unifying all four fundamental fields 

with a well known geometry due to Cartan as described in foregoing chapters of this book. 

Towards the end ofthe nineteenth century the classical physics evolved gradually into 

special relativity and the old quantum theory. The experiments that led to this great paradigm 

shift in natural philosophy are very well known, so need only a brief description here. There 

were experiments on the nature of broadband (black body) radiation leading to the Rayleigh 

Jeans law, the Steffan Boltzmann distribution and similar. The failure of the Rayleigh Jeans 

law led to the Planck distribution and his inference of what was later named the photon. The 

photoelectric effect could not be explained using the classical physics, the Brownian motion 

needed a new type of stochastic physics indicating the existence of molecules, first proposed 

by Dalton. The specific heats of solids could not be explained adequately with classical 

nineteenth century physics. Atomic and molecular spectra could not be explained with 

classical methods, notably the anomalous Zeeman effect. 

The Michelson Morley experiment gave results that could not be explained with 



the classical Newtonian physics, so that Fitzgerald in correspondence with Heaviside 

suggested a radically new physics that came to be known as special relativity. The 

mathematical framework for special relativity was very nearly inferred by Heaviside but was 
I 

developed by Lorentz and Poincare. Einstein later made contributions of his own. The subjects 

of special relativity and quantum theory began to develop rapidly. The many contributions of 

Sommerfeld are typically underestimated in the history of science, those of his students and 

post doctorals are better known. The old quantum theory evolved into the Schroedinger 

equation after the inference by de Broglie of wave particle dualism. Peter De bye asked his 

student Schroedinger to try to solve the puzzle posed by the fact that a particle could be a · 

wave and vice versa, and during this era Compton gave an impetus to the idea of photon as 

particle by scattering high frequency electromagnetic radiation from a metal foil - Compton 

scattering. 

The Schroedinger equation proved to be an accurate description of for example 

spectral phenomena in the non relativistic limit. In the simplest instance the Schroedinger 

equation quantizes the classical kinetic energy of the free particle, and does not attempt to 

incorporate special relativity into quantum mechanics. Sommerfeld had made earlier attempts 

but the main problem remained, how to quantize the Einstein energy equation of special 

relativity. The initial attempts by Klein and Gordon resulted in negative probability, so were 

abandoned for this reason. Pauli had applied his algebra to the Schroedinger equation, but 

, I 
none of these methods were successful in describing the g factor, Lande factor or Thomas 

precession in one unified framework of relativistic quantum mechanics. 

Di~ac famously solved the problem with the use of four by four matrices and 

Pauli algebra but in so doing ran in to the problem of negative energies. Dirac suggested 

tentatively that negative energies could be eliminated with the Dirac sea, but this introduced 



an unobservable, the Dirac sea still has not been observed experimentally. Unobservables 

began to proliferate in twentieth century physics, reducing it to dogma. However, Dirac 'Yas 

famously successful in explaining within one framework the g factor of the electron, the 

' Lande factor, the Thomas factor and the Darwin term, and in producing a theory free of 

negative probabilities. The Dirac sea seemed to give rise to antiparticles which were observed. 

The Dirac sea itself cannot be observed, and the problem of negative energies was not solved 

by Dirac. 

It is not clear whether Dirac ever accepted indeterminacy, a notion introduced by 

Bohr and Heisenberg and immediately rejected by Einstein, Schroedinger, de Broglie and· 

others as anti Baconian and unphysical. The Dirac equation reduces to the Schroedinger and 

Heisenberg equations in well defined limits, but indeterminacy is pure dogma. It is easily 

disproven experimentally and has taken on a life of its own that cannot be described as 

science. Heisenberg described the Dirac equation as an all time low in physics, but many 

would describe indeterminacy in the same way. In this chapter, indeterminacy is disproven 

straightforwardly with the use of higher order commutators. Heisenberg's own methods are 

used to disprove the Heisenberg Uncertainty Principle, a source of infinite confusion for 

nearly ninety years. One of the major outcomes ofECE theory is the rejection of the 

Heisenberg Uncertainty Principle in favour of a quantum mechanics based on geometry. 

The negative energy problem that plagued the Dirac equation is removed in this 

chapter by producing the fermion equation of relativistic quantum mechanics. This equation is 

not only Lorentz covariant but also generally covariant because it is derived from the tetrad 

postulate of a generally covariant geometry - Car,tan geometry. All the equ~tions of ECE 

theory are automatically generally covariant and Lorent~ ,covariant in a~wll defined limit of 

general covariance. So the fermion equation is the first equation of quantum mechanics 



unified with general relativity. It has the major advantages of producing rigorously positive 

energy levels and of being able to express the theory in terms of two by two matrices. The 

fermion equation produces everything that the Dirac equation does, but with major 

advantages. So it should be viewed as an improvement on the deservedly famous Dirac 

equation, an improvement based on geometry and the ECE unified field theory. 

The latter also produces the d' Alembert and Klein Gordon equations, and indeed 

all ofthe valid wave equations of physics. Some ofthese are discussed in this chapter. 

5.1 THE FERMION EQUATION 

The structure of ECE theory is the most fundamental one known in physics at 

present, simply because it is based directly on a rigorously correct geometry. The fermion 

equation can be expressed as in UFT 173 on www.aias.us in a succinct way: 
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where the fermion operator in covariant representation is defined as: 
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where e is the energy momentum four vector: 
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The Pauli matrices are defined by: 
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whose entries are defined by the right and left Pauli spinors: 
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This eigenfunction is referred to as "the fermion spin or". 
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The position representation of the fermion operator is defined by the symbol r 
and is: 
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Therefore the fermion equation is the first order differential equation: 
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For purposes of comparison, the covariant format of the Dirac equation in chiral 

representation { 13} is: 
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is a column vector with four entries, and where the Dirac matrices in chiral representation 

{ 13} are: 

The complete details of the development ofEq. ( 1.. ) are given in Note 

172(8) accompanying UFT 172 on www.aias.us The ordering ofterms in Eq. ( 1.. ) is 

important because matrices do not commute and f is a 2 x 2 matrix. The energy 

eigenvalue ofEq. ( 1 ) is rigorously positive, never negative. The complex conjugate of 

the adjoint matrix of the fermion spinor is referred to as the "adjoint spinor" of the fermion 

equation, and is defined by: .f ~ ~ 
f~ ~ 

The adjoint equation ofEq. ( i. ) is defined as: 
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where the compleX conjugate of \·{has been ~sed. These equations hfv well known 
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counterparts in the Dirac theory { 1 - 10, 13} but in that theory the 4 x 4 gamma matrices are 

used and the definition of the adjoint spinor is more complicated. 



The probability four-current of the fermion equation is defined as: 

(t D"'<t + t 't + o~f) 
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and its Born probability is: 

' 0 

which is rigorously positive as required of a probability. It is the same as the Born probability 

of the chiral representation { 1 - 10, 13} of the Dirac equation. In the latter the four current is 

defined as: 

- (l~) 

and the adjoint Dirac spinor is a four entry row vector defined by: 

+ "{) ~ y •. v - ·r 
It is shown as follows that the probability four-current of the fermion equation is 

conserved: 

0. 

+ 
To prove ~i result multiply both sideS ofEq. ( 1. ) from the right with f : 

t ',.J;;t+-
i{~fo""f =Vhc6 'l·r· 

(·~tt: 
Multip~ both sides ofEq. ( \$ ) from the with t 



and 

Q.E.D. 

in which E and p are the operators of quantum h . mec antes: 
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Using the quantum postulates this becomes the wave equation: f2 

(o+tf)JJf 
and it becomes clear iliat r ~ion~equ(n 1=-~~t)n :r EEC :ve equati() ~ 

whose eigenfunction is ilie tetrad ( 1 ). 
Therefore the fermion equation is obtained from the tetrad postulate and Caf.tn 

geometry. The tetrad is defmer~R l 
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i.e. as a matrix relating two column vectors. 



The parity operator Pacts on the fermion spinor as follows: 

and the anti fermion is obtained straightforwardly from the fermion equation by operating on 

each term with P as follows: 

p ~ t~ e f~ L -(>0 dx;) ~ (;) e Lr) rf:l - cfJ 
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Note carefully that the eigenstates of energy are always positive, both in the fermion and anti 

fermion equations. The anti fermion is obtained from the fermion by reversing helicity: 

-(31) o·f -
and has opposite parity to the fermion, the same mass as the fermion, and the opposite electric 

charge. The static fermion is indistinguishable from the static anti fermion { 13}. So CPT 

symmetry is conserved as follows form fermion to anti fermion: 

Cf T __, (- c) (- t j - (~~ 

where Cis the charge conjugation operator and T the motion reversal operator. Note carefully 

that there is no negative energy anywhere in the analysis. 

The pair of simultaneo'us equations ( l ~ ) and ( )_ ~ ) can be written as: 
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~(4\-) 

(0 - ·t)f 



4-~ 
an equation which can be re arranged as: -:> rl-r' ") J 4)fl . f c. 0 . f () 
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and factorized to give: 
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If p is real valued, Pauli algebra means that: h4 
":) -Cn) 0 . f 0 f - f • - _... -
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so if E and p are regarded as· functions, not operators, Eq. ( ~I ) becomes the Einstein 

- A 
energy equation: 

L 
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multiplied by r on both sides. lt~i well known {1- 10} that the Einstein energy equation 

is a way of writing the relativistic energy and momentum: 4-b 
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(~) 
~3 J. 

Realizing this, Eq. ( ~ ) can be linearized as follows. First, express it as: 

- e,);c ·f ~· f fl_(~ 

and approximate the total energy: 

-l 



by the rest energy: 
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which has the structure of the free particle Schroedinger equation: 
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in which the non relativistic limit ofthe kinetic energy is defined in the limit v << c by: J 
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So the fermion equation reduces correctly to the non relativistic Schroedinger 

equation for the free particle, Q.E.D. 

The great importance of the fermion equation to chemical physics emerges from 

the fact that it can describe the phenomena for which the Dirac equation is justly famous while 

at the same time eliminating the problem of negative energy as we have just seen. In quantum 

field theory this leads to a free fermion quantum field theory. This aim is very difficult to 

achieve { 13} in the standard quantum field theory because methods have to be devised to deal 

with the negative energy. The latter is d'ue simply to Dirac's choice of gamma matrices. 

The way in which the fermion equation describes the g factor of the electron, 

I 
the Lande factor, the Thomas factor and Darwin term is described in the following section. . -
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5.2 INTERACTION OF THE ECE FERMION WITH THE ELECTROMAGNETIC FIELD. 

The simplest and most powerful way of describing this interaction for each 

polarization index a ofECE theory is through the minimal prescription Slt 

e_A~-c~) 
54-

where a negative sign is used { 13} because the charge on the electron is -e. Eq. ( ~) can be 
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written as: 

and: 

-
which can be factorized as follows: ( ~ _ ~r _ ~:!)( f- e_f T ¥\-_G) " C ~ 
and written as: 
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in a form ready for quantization. The latter is carried out with: 

f -7 ~ ;f'sz_ 
-

and produces many well known effects and new effects of spin robit coupling described in 



papers ofECE theory such as UFT 248 ff on www.aias.us. 

The most famous result of the Dirac equation, and its improved version, the ECE 

fermion equation, is electron spin resonance, which depends on the use of the Pauli matrices 

as is very well known. In this section the various intricacies of this famous derivation are 

explained systematically. Electron spin resonance occurs in the presence of a static magnetic 

field, so the scalar potential can be omitted from consideration leaving hamiltonians such as: 

H ,J; ~ J_ (!- (-;f'!_-~B_J~ · (-.-f~ -e8_))f 
il )lh - (§) 

Note carefully that the operator ~ acts on the wave function, which is denoted f for 

ease of notation. The following type of Pauli algebra: 

o '[tJ 0 v.Wt-t·tJ.Vx'ff. - · - - · - - ~ -ci )-
leads to: 

t~')l~t~~·Ax~)+~-~t(A·~ +t'!·iB_x'i)) f 
Assuming that A is real valued, then: - { 5;5. { 

(~) r1 . 0 
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Also: 

-
so: 



It can be seen that the fermion equation produces many effects in general, all of which are 

experimentally observable. So it is a very powerful result of geometry and ECE unified field 

theory. Gravitational effects can be considered through the appropriate minimal prescription 

as in papers such as UFT 248 ff. Many ofthese effects remain to be observed. 

Electron spin resonance is given by the term: 

_ -4_ o . (~ '~'- L_!1f) +.a_)< 
~"" 
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where the standard relation between B and A has been used to illustrate the argument: 
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In the rigorous ECE theory the spin connection enters into the analysis. A vast new su ·bject -
area of chemical physics emerges because electron spin resonance (ESR) and nuclear 

magnetic resonance (NMR) dominate the subjects of chemical physics and analytical 

chemistry. 

Use of a complex valued potential such as that in an electromagnetic field rather 

than a static magnetic field produces many more effects through the equation: 
~ 

teo· (_f -R_B_)){{(~~rJ-cO" · Cr -~~)j f 
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leading to many new fermion resonance effects using the electromagnetic field rather than the 

static magnetic field. 

For example the \-\ :l_ hamiltonian can be developed as: * 
"<- J_ ( I -e_ t ( ~ • ~# t- ,· ~ • '2_ X 1l 
_tJ(q')+i~·'i~SL * 
J(R·A:t+i~· Axfl) 
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giving four out of many terms that can give novel fermion resonance effects. Using for the 

sake of argument: 

then the hamiltonian reduces to: 
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and a term due to the conjugate product of the electromagnetic field: 

) 
\ {_ -- • 
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dY'h. 
which defines the B(3) field introduced in previous chapters: C) A (~) 

~ l)J ~ - - \.d A X A :f = 'i !i X~ . 
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Eq. ( ~ ) is the hamiltonian that defines radiatively induced fermion resonance (RFR), 

extensively discussed elsewhere { 1 - 10} but derived here in a rigorous way from the fermion 

equation or chiral representation of the Dirac equation. 

,, 
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and a term due to the conjugate product of the electromagnetic field: 

.e..J ().A')<.. A#-
- -
:1.~ 

which defines the B(3) field introduced in previous chapters: 

Eq. ( <? \ ) is the hamiltonian that defines radiatively induced fermion resonance (RFR), 

extensively discussed elsewhere { 1 - 10} but derived here in a rigorous way from the fermion 

equation or chiral representation of the Dirac equation. 

Spin orbit coupling and the Thomas factor can be derived from the Hd..d.. 

hamiltonian defined as follows: 

-~~~~ ~ ·\1(!.·(f-~e_)f~· (i-f.BJ)rf-{wJ) 
4-~c. -

This hamiltonian has its origins in the following equation: 
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in the approximation: 

In this approximation. Eq. ( ~~ ) becomes: 
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and in the approximation: 

the H'l 'l hamiltonian is recovered as the last term on the right hand side. 

In the derivation of the spin orbit coupling term several assumptions are made; but 

not always made clear in textbooks. The vector potential A is not considered in the derivation 

of spin orbit interaction, so that only electric field effects are considered. Therefore the 

relevant hamiltonian reduces to: 

It is assumed that the first p is the operator: 

- - ;ff.:::) - 1-_ 

but that the second p is a function. This point is rarely if ever made clear in the textbooks. 

This assumption can be justified only on the grounds that it seems to succeed in describing the 

experimental data. When this assumption is made .J;:q. ( ~ f ) reduces to: 

-- -
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so ilie spin orb~:~act te~ is: ; e_ t 1 (!: . 'q_ r ~ . i) 1 -(~ 0 
'-+~")G. + 

It is seen Eq. ( '\ \..r ) is only one out of many possible effects that emerge from the fermion 

equation and which should be systematically investigated experimentally. 

In the development of the spin orbit term the obsolete standard physics is used as 

follows: 

-
-6 • \.: - - -

Now use the Pauli algebra: 

o·l - . f -- -- --
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so the real part of the hamiltonian from these equations becomes: 

(). 

in which p is regarded as a function, and not an operator. If this second p is regarded as an -
operator, then new effects appear. 

Note carefully that in the derivation of the Zeeman effect, ESR, NMR and the g 

factor of the electron, both p's are regarded as operators, but in the derivation of spin orbit 

interaction, only the first pis regarded as an operator, the second pis regarded as a function. 

Finally in the standard derivation of spin orbit interaction, the Coulomb potential· of 

electrostatics is chosen for the scalar potential: 

so the electric field strength is: 

_q - .e ---
The relevant spin orbit hamiltonian becomes: 

- ~~t ()• -
")L :\(~ 
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in which the orbital angular momentum is: 
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Therefore the spin orbit hamiltonian is: 

-
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In the description of atomic and molecular spectra, the spin angular momentum 

operator is defined as: 

s -
J_~o 
lh._ 

derivation of the Thomas factor is one of the strengths of the fermion equation, which as we 

have argued does not suffer from the negative energy problem of the Dirac equation. 

and assume that: 

- (t&t) A 0 
-

so: 

~\-n1 .!(_ ~ . f f 6' . f +· -(io~ - -'-+ ") J 
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In the derivation of spin orbit coupling and the Thomas factor the first p is regarded as an -
operator and the second pas a function. In the d~rivation of the Darwin te!ID both p'& are -
regarded as operators, defined by: 
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with expectation value: 

(j_? - cf*! t kr-. -(lr0 

Therefore the Darwin term . b . IS o tamed from: 

~· 1-1~~1 ~ 3") J!:. · (-~f~)cf ~ · (-d:sz )) f _(ry 
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and is a quantum h . mec anical phenomenon with no classical counterpart. 

From Eq. ( \\ \ ): 

\~~~1 ~-&~·'l f ~:-~)f -c~~~) 
and the fist del operator 'J ~ - operates on all that follows it so· 

~~~ i '" -~ ~ . 'I ({ ~ . 5[ 1). -(1!~) 
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The Leibnitz Theorem is used as follows: 

Therefore: 
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Usually the Darwin term is considered to be: :l 
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5.3 NEW ELECTRON SPIN ORBIT EFFECTS FROM THE FERMION EQUATION 

On the classical standard level consider the kinetic energy of an electron of mass 

m and linear momentum p: 

and use the minimal prescription ( 5.b ) to describe the interaction of an electron with a 

As discussed in earlier chapters the vector potential can be defined by: 
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where the orbital angular momentum can be defined as follows: 

~ ·.(!_x~):o~·~x.f 
-

This analysis gives the well known hamiltonian for the interaction of a magnetic dipWl 

- .e - L·~ -~ . e - {) -
moment with the magnetic flux density: 

-
)~ -

which can be written in the SU(2) basis as: 

( ~ ·J ".a 
Using Pauli algebra: f;x_tl 

A A t ~ 0 • 
- r . () ~ 0 • -• 
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and the same result is obtained be cause: 
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From compar" f I son o the real and im . l "'\-, . agmary parts ofEqs ( d. ()and ( \1S ): 
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Therefore we obtain the important identities: 
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The hamiltonian ( \~)can therefore be written as: 
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Finally use eqs. ( \d. \ . ) and ( ~~ q ) to find: 
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It can be seen that the well known hamiltonian responsible for the Zeeman effect has been 

developed into a hamiltonian that gives electron spin resonance of a new type, a resonance 

that arises from the interaction of the Pauli matrix with the magnetic field as in Eq. ( \ 4o ). If 

the magnetic field is aligned in the Z axis then: 

(). . ':. l- ' 0 l ~ (\4-9 
-z.. 0 -\J 

and the electron spin orbit (ESOR) resonance freq~ency is: 

L -
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This compares with the usual ESR frequency: ( ~\ 

w -:. ~{b. - \'+~) 
~ 

from the hamiltonian derived already in this chapter from the fermion equation. 

The ESOR hamiltonian contains a novel spin orbit coupling when quantized: 

-=- 3- ~ . ~ ~ ·l 1· - (14c4-) 
)~ 

in which the total angular momentum J is defined by the Clebsch Gordan series: 
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Eq. ( \\.t~) was first derived in UFT 249 and is different from the well known ESR spin 

.e_ L . ~ 1- AS · L -.et ~ · ~ "0 - C). ![ . JL_ -~ - ~ - - ~ - o;y~~-r A' 
hamiltonian: 

It was derived using well known Pauli algebra together with the fermion equation and 

!S/ 
potentially gives rise to many useful spectral effects. 

For chemical physicists and analytical chemists therefore the most useful format • 

and a few examples have been given in this chapter of its usefulness. In ECE theory Eq. (\$"\ ) 

has been derived from Cartan geometry and by using the minimal prescription. The fermion 

equation as argued is the chiral Dirac equation without the problem of negative energy, which 

to chemists was never of much interest. In chemistry the subject is approached as follows. 

By regarding 0 as a function rather than an operator this term can be developed using -
Pauli algebra as follows: 



For a uniform magnetic field: 
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- - J( (~X.:_.! -\- i , ~ 'X .5:: - (t, 
+ \ ;~ (~~~}~ _f +! x{J_x~· f. 

~ ~. ~ -(10 By regarding p as a function: -
-

so the hamiltonian becomes: 

\ 
\ ""( J -:. _ .e_ L · lS 

~ 1\~T £:--
At this stage p is regarded as an operator so the second term on the right hand side 

of eq. ( \57) does n~anish. The use ofp and 6' Qls functions or operators is arbitrary, -
. and justified only by the final comparison with experimental data. From Eqs. ( 1>7) and -( \ )lt) the hamiltonian can be written in the format used in chemistry 

\~ \ rL ~ (- ~ b . ! -~ ~ . ! ) f 
.\ - -e_ ( h 1- d.~) f -(ts~J 
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The total angular momentum is conserved so ~q. ( \5%) can be written as: 1 
'\ A( J - -€ ~~ -:s • ~ 
I\ "T -;_ ~ ~L -- --

where: 

s ) \ L- ~I - . . ) 

from the Clebsch Godan series. 

The conventional spin orbit term emerges as described earlier in this chapter from 

another~term of the h~iltonian: (J • ( f _ .e Aj f ~ . ( f _ e A ) f . _ (!~ ('\ 
\~ - ·- - - / ---"). - -

5o U-~C-

in which the first pis described as an operator but in which the second pis a function, giving -
the spin orbit term: 

- -~~ ~ . ~ f ~ ·_f_ . - (ll~ 
4~ (... 

-· So the complete ESR hamiltonian is: 

L·~ - .~ -

in which the spin orbit coupling constant is: 

- ( \tl~ 



-\ jc-

Fi;Iy~~S:La:ota~rs,('J (~ + ~-- L(l+ 0-s( S + 0) 1 
r- - "\ --s:- - {tb~ 

The above is the very well known conventional description of ESR in the 

language used by chemists, and is a description based in ECE theory on geometry. In ECE 

theory it can be developed in many ways because it is generally covariant while the obsolete 

standard description is Lorentz covariant. 

However, several new spectroscopies can be developed using a well known Pauli 

algebra but one which seems never to have been applied to fermion resonance spectroscopies: { 0 
_ , t5' • r ( ( . o t- \. a- • b._) - I~ 

()-~---- -\ -
;: E:. • f_ ( .£_. a+ ~·! . (''><:a_) _{It~ 
(J. 

-
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For a uniform magnetic field: 

F\ 0 (l~%) 
( • 
r- ....-

so: 0 l ~ A~ ( -c~~~ 
A ' 

, • - -- -
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• ":\ __. 
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and 
("" X A -(n-0 

A _L r . f o· --
() . f )<.. 

(":) - ---- -
as in note 250(7) accompanying UFT 250 on W\Vw.aias.us. Using these results it is found 

that: 



Using Eq. ( \\\ fo . ) r a umform magnetic field gives· ( ) 0 
F\ ~ ( -=- j__ (\1 )<. ( \ ~ { .... J_ ( (f. ~) - ' ! 
- - d._ - _J - d. ,.._ - -

.. -(n~) 
givmg a novel spin orbit h "1 . . - ami tom an m the useful form. 

~ \ 1 ~ 6 f. . ( ~ - J-J (~·. &_)) ~ . h 1·- { n9 
( . 

Its expectation value is: 

with the normalization: 

Using the result: 

~· ~f ... i~(J(>+~-L(L+)-sCs+l~f 
the energy . d- . - c n

6

) 
eigenvalues of the ham"lt . . I oman are: 



-I ~ 

,( ~~(:s(-st0-L(u~-s(st~ !·1- f*!(·~ I·! i k( 
~~ - -(nt) . 

as in note 250(9) accompanying UFT 250 . on www.atas.us. 

In spherical polar coordinates: V . f1 -~ ( .Y L~ ~ <St~Ct cost, _ (cR' 

1 "" ( st~-.B Sil\. r 
. 'Z "" ( c o.s e 

and mtegration of a function over all space means: 

r j J ' - I )._ 'li ( '1r 1. dJ J 1 L .{ 
<t"'--r- Jf--o Je,o "~' ~,J]U~G7.- n~ 

If the magnetic field is aligned in the Z axis th . C . en m artesian coordinates: 

~. ~- ~. i ~ 0 -z. 117_ ~ ") -(lg~) 
' y!t-YJ.+'l:l ') 
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In spherical coordinates: 

1 
~ ~ ') 

'~? -t '{ ) +- '"Z 
so: 

It is seen that this part of the hamiltonian is r dependent and must be evaluated for each wave 

!Unction t . The only analytical wave functions are those of atomic H, so computational 

methods can be used to.evaluate the energy levels ofEq. ( \ ¥5) for the H atom. The results 

are given in UFT 250 on www.aias.us and summarized later in this chapter. 

Consider now the hamiltonian: A 
_g__ fo-~ ~·rl -r-r-_ 

~~~- l -

~\+~:~~[~~ ~ (~. 5! 6' -A t ~. £i ~. ~1 
-(tn) 

Note that: 

-C\?D -:: ~ ( .!(_ v - ~ '( J 
{ r • - -• - ----: '(' -- )r 
r- r- l 

\ 

where the radial unit vector is defined as: 

( 
r--
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From Pauli algebra: . ) { ' 

() . A ~ :..,_;!_:_·_--=-' -- ( !_ . _fL t l. ~ • f_ X A ~ l''\0 

- - ( :l 

and for a uniform magnetic field 

in which: 

it follows that: 

f\ _ L \)x r 
n d..- -

~ . A - () --

o . A 
. cS • \ - -

J. 
{ --

Using Eq. ( l"' \)it follows that: <1 ( ~ hJ 
J_ ;_ ~ A - -%_ ( ~ - ~ • ( ~ . ~r~ - '/ 

('" 

and that: 



The hamiltonian ( ' ~l ) can therefore be developed as: 

Recall that the conventional development of the hamiltonian is well known: 

_ H1 ~ t& ( '1 ·(~of) 1r A· Y-cf -6-oj 
_ -e_~ ~ • 'i x{fitf) t ft x'i 1 · 

~ _ J ~ . 1 t ,·4_ (" · fi) f + 1 Y 1 · B 
~~ 

and misses the information given in Eq. ( t '\ i ) .. 
•' 

As in note 251(2) on www.aias.us It is possible to define three novel types of 

hamiltonian: 



-\ ~ r -{ 'j_o ~ ~I+ --e_~ 0 • ~I - --clVh . ~ ,- fM-. - (~o~) 
l-bf 

- -e_{:' 0 
- d\ . 

d.~ 

{~b0 r H)f ~ 
.e_ fY• ~I /) .L -
d.t'h 

whose energy expectation values are: 

,-:_ ~ -~ 
L: \ "d.rr-

- -e_:t - ...;;---

~rr-

.fl. --J~ 
-l:). 

f f £ . ~ I + ~rc - ( :~-o0 
1 f ~ • ~I f Jt- (~- (:Jo~) 
f t :T_ • ~ ~ • L f J_-c - ( ~j 

with the Born normalization: 

~r[ = 1_ -( )o-v 
These are developed in UFT 251 for the hydrogenic wavefunctions, giving many novel results 

of usefulness to analytical chemisty. 

The use of well known Pauli algebra in a new way is illustrated on the simplest level 

in UFT 252 with the kinetic energy hamiltonian itself: 

1-[~o\?) 

in which the Pauli algebra is: 
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0 . ~ - -

Therefore: _ \ / ( • p + l ~ . l ) ( :._ • f t- l 11' • \::) 

v . ~ ~. ~ - -J l-- ~ ,_ 
- - - < 

"} - - '"l L L ,-- < - l - l. f. . - ')(. - . 

which can be quantized using: • 
0 

j J -:: ~ ( d ~ - (J 11) 
r \ "r -:- ~(" 

L "} 1-=- f.) .t (f.+,) f J !::-' 'f..L + -=- ,·f f ) 
~ . '= t "'-r ( $ ( ~ t t) -~( e + t) - s ( s + tJ) f ' 

~ 

Therefore there are results such as the following which are instructive in the use of operators 

in quantum mechanics: 

As shown in detail in UFT 252 the hamiltonian ( d C> 8) ~an be developed as: 
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where the wavefunctions are the spherical harm . omcs: 

The analysis gives two novel classes of ener . 

t1 ~t;(~U+~-€(~~p5mtto~{;:'g f*7#- ~re 
and - C ") \Lie) 

~ (; J- ~ :[_ (i lit~- €(~ t~ -J(S+0 rf f? t d_--r 

cl~ ( 0 
which ar 1 - ~ l ~ 

e eva uated by computer in UFT 252. 

Similarly the hamiltoni . . an quadratic m the potential: 

can be developed as in UFT 252 . lq \. , -usmg Eq. ( ) as: 



-\ fc 

H s f ~ ~? t~ . ( :y, -co/B) 1 -{ ~~j 
~~ 

again giving novel types of spectroscopy. 

\T\he:iltonianj_ ~ • ~ { \ +d._~) £ • J_ + _ {"J!0 
\1~\ ~~ - ~~~ 

There are several terms in this equation that can be developed as in UFT 252. For example: 

l~ '\ i - -e "> 1 ;_ . ! l ~ ;_ ·J +) 
4 1'1- c.- < - c~}. -;). l) 

in which: 

l . i ·f -~ ,· t ( ~ - ( ~;))) 

So the hamiltonian gives: 



-\ f!" 

which give observable new fermion resonance spectra. 

four hamiltonians: 

14 
\

0 1 
\1 \\ ef ~ 

HtJ1" 
\~ t> f ~ 

and these are evaluated systematically in UFT 252 giving many new results. 

Finally in this section the effect of gravitation on fermion resonance spectra can be 

evaluated as in UFT 253 using the gravitational minimal prescription: [ ~ '-" -\- ""- ~ - c }Jo) 
where the gravitational potential is: 



-\ ~ 

where G is Newton's constant and where '£ is the gravitational potential. Here M is a 

mass that is attracted to the mass of the electron m. Vriosu effects of gravitaton are developed 

in UFT 253. 

5.4 REFUTATION OF INDETERMINACY 
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5.4 REFUTATION OF INDETERMINACY: QUANTUM HAMILTON AND FORCE 

EQUATIONS 

The methods used to derive the fermion equation can be used as in UFT 175 to UFT 

177 on www.aias.us can be used to derive the Schroedinger equation from differential 

geometry. The fundamental axioms of quantum mechanics can be derived from geometry and 

relativity. These methods can be used to infer the existence ofthe quantized equivalents of the 

Hamilton equations of motion, which Hamilton derived in about 1833 without the use of the 

lagrangian dynamics. It is very well known that the Hamilton equations use position (x) and· 

momentum (p) as conjugate variables in a well defined classical sense { 1 - 1 0} and so x and p 

are "specified simultaneously" in the dense Copenhagen jargon of the twentieth century .. 

Therefore, by quantum classical equivalence, x and pare specified simultaneously in the 

quantum Hamilton equations, thus refuting the Copenhagen interpretation of quantum 

mechanics based on the commutator of operators of position and momentum . The quantum 

Hamilton equations were derived for the first time in UFT 175 in 2011, and are described in 

this section. They show that x and p are specified simultaneously in quantum mechanics, a 

clear illustration of the confusion caused by the Copenhagen interpretation. 

The anti commutator t ~ 1 f 1 is used in this section to derive further 

t"" "'-1 refutations of Copenhagen, in that l ~ , f acting on a wavefunctions that are exact 

solutions of Schroedinger's equation produces expectation values that are zero for the 

harmonic oscillator, and non zero for atomic H, The anti commutator £ ~ 1 (] is shown to 

be proportional to G ';) 1 f "l J , whose expectatiq~ values for the harmonic oscillator are all 

zero, while for atomic H they are all non-zero. For the particle on a ring, combinations can be 

zero, while individual commutators of this type are non-zero. For linear motion self 
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inconsistencies in the Copenhagen interpretation are revealed, and for the particle on a sphere 

the commutator is again non-zero. The hand calculations in fifteen additional notes 

accompanying UFT 175 are checked with computer algebra, as are all calculations in UFT 

theory to which computer algebra may be applied. Tables were produced in UFT 175 of the 

relevant expectation values. The Copenhagen interpretation is completely refuted because in 

that interpretation it makes no sense for the expectation value of a commutator of operators to 

be both zero and non-zero for the same pair of operators. One of the operators would be 

absolutely unknowable and the other precisely knowable if the expectation value were non 

zero, and both precisely knowable if it were zero. These two interpretations refer respectively 

to non zero and zero commutator expectation values, and both interpretations cannot be true 

for the same pair of operators. Prior to the work in UFT 17 5 in 2011, commutators of a given 

pair of operators were thought to be zero or non zero, never both zero and non zero, so a clear 

refutation of Copenhagen was never realized. In ECE theory, Copenhagen and it unscientific, 

anti Baconian, jargon are not used, and expectation values are straightforward consequences 

of the fundamental operators introduced by Schroedinger. The latter immediately rejected 

Copenhagen, as did Einstein and de Broglie. 

The Schroedinger equation is derived in ECE from the tetrad postulate of Cartan 

geometry, which is reformulated as the ECE wave equation: 

0 

where: 

as discussed earlier in this book. The fermion equation in its wave format is the limit: 



and for the free particle reduces e J. \J J (, 

~;;t"" I 
This equation reduces to the Schroedinger equation: 

i -( J.st) e) q)f - \.::tJR 

')~ 

where: J c~~~) 
~tJ(L ~ ~(__ 

In this derivation, the fundamental axiom of quantum mechanics follows from the wave 

equation ( ~ 'l) and from the necessity that the classical equivalent of the hamiltonian 

operator H is the hamiltonian in classical dynamics, the sum of the kinetic and potential 

\-\ +\[ 
energies: 

So in ECE physics, quantum mechanics can be der~ved from general relativiry in a 

straightforward way that can be tested against experimenta:i data at each stage. For example 

earlier in this chapter the method resulted in many new types of spin orbit spectroscopies. 



. 
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The two quantum Hamilton equations are derived respectively using the well 

known position and momentum representations of quantum mechanics. In the position 

) !"+ \* ~ ,·f H -(~~ 
~f ') JjC 

representation the Schroedinger axiom is: 

,·f1 -(~~) from which it follows that: 

[~I f1 f 
So the expectation value of the commutator is: 

/_I\ /\1~ 
'-lxJf ? 

In the position representation the expectation value, <x>, ofx is x. It follows that: 

~ (; '> ~ -~ z [ ~ ) i J > 
c}_)t t 

Note that this tautology can be derived as follows from the equation: 

~(_~') ~ ~ 11*:+ .{'( -(:)[~4) 
ci,_x ck_:x.. 

which can be proven as follows. First use the Leibnitz Theorem to find that: 
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Therefore it follows that that Eq. ( ) 45) is:.. _ :t ( 1\ A I\ /\ ) _/, ~ r( 
~ < :c ') "- 1_ "- -;._ 1 f X - )t f 'j . 

.Q< t - ( )'-+:) 
which is Eq. ( ~\'1 ), Q. E. D. 

The first quantum Hamilton equation is obtained by generalizing x to any 

hermitian operator A of quantum mechanics: 

~ _, A - (-4~ ") 

so one format of the first quantum Hamilton equation is: 

- " L <A'!~ i__<::Lr~ 
~,~ ~ 

In the special case: 1\ 

\-\ l )_So) 

then: <cr, HJ)_-(~sJ 
-

However, it is known that: 

t\ {I'" - f) 
cAl . 

so from Eqs. ( J..5\) and ( )5J) the quantum Hamilton equation is: { v 
A / '' > _ d..S~ 

;L <tt>~-1t~r· 
tlx 

The expectation values in this equation are: 



f ~:;< f '> -( J.S0 
. 

so the first Hamilton equation of motion of 1833 follows, Q.E.D.: 

JJ\ -
The second quantum Hamilton equation follows from the momentum 

representation: 

from which the following tautology follows: 

This tautology can be obtained from the equation: 

Now generalize p to any operator A: 

" f 
A 

A -( -:l.S~J 
and the second quantum Hamilton equation in one format is: 

\ 

In the special case: I\ I\ 

F\ - ~\ 

the second quantum Hamilton equation is: 



However it is known that: 

(C~,,~n> £ ~i-~ '> - (~'9 
\ 

so the second quantum Hamilton equation is: 

J..(H'> ~ -
which reduces to its classical counterpart, the second quantum Hamilton equation of classical 

dynamics, Q.E.D.: 

dJ\ 
""r 

Note carefully that both the quantum Hamilton equations derive directly from the 

familiar commutator ( J.. '+) ) of quantum mechanics. Conversely the Hamilton equations of 

1833 imply the commutator ( 'l~ )) given only the Schroedinger postulate in position and 

momentum representation respectively. In the Hamilton equations of classical dynamics, x 

and p are simultaneously observable, so they are also simultaneously observable in the 

quantized Hamilton equations of motion and in quantum mechanics in general. This argument 

refutes Copenhagen straightforwardly, and the arbitrary assertion that x and pare not 

simultaneously observable. 

The anti commutator method of refuting Copenhagen was also developed in UFT 

In the position representation the anti commutator is: 



t\J. (\) 

(~l;t:e~~ufo'~ (r_; ): ~} {d:fi;7l ~ J> fl) f._ ( ~~ 

In three dimensions the Schroedinger axiom in position representation is: 



in which: 

--.. -
So: 
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So: 

mensiOnal equivalent ofE ("'\..,'\ . q. d. ICI() 1s: and the three di . 

[_~~~ f~1f = J.-~l_I~.t] +. -(:u:) 

With these definitions some expectation values: < l ~ ~ ) f /1 '> ·~ ~ (. t <' ~ £ ) f l '> 
--(~1 
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are worked out for exact solutions of the Schroedinger equation in the fifteen calculational 

notes accompanying UFT 175 on www.aias.us. All expectation values were checked by . 

computer algebra and tabulated. The result is a definitive refutation of Copenhagen because 

expectation values can be zero or non-zero depending on which solution of Schroedinger's 

equation is used, as discussed already. So this method reduces Copenhagen to absurdity, Q. E. 

D., a reductio ad absurdum refutation ofthe Copenhagen interpretation of quantum 

mechanics. 

The force equation of quantum mechanics was first inferred in 2011 in UFT 176 

and UFT 177 on www.aias.us and have been very influential. It was derived from the two · 

quantum Hamilton equations: 
I' 

and 

\{ sL ~ H ') -
~~ 

1\ 

~· f L ( 'rl '> "" 
~f 
/' " 

< l~' fl) -(aoi0 

<L~~~1)-(d~v 

applied to canonical operators p and q. By using the well known { 1 - 10}: 

A_ (~)" I~~ ) ) A_ <H'> ~ 
~~ ~ 4~ Jf 
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where 1 
then: <tV ---cl_)c 

because in the Hamilton dynamics x and pare independent, canonical variables. Therefore Eq. 

where F is force, Eq. ( d.~\) gives the force equation of quantum mechanics: 

- ( i) + - ff - (:l ~~ 
where the eigenoperator is defined by: 

/' 

cA ~\ -
+ c0J-(>~ . _ (1o~ 

J..x 

In the classical limit, the corresponding principle of quantum mechanics means that Eq. (d'\~) 

becomes one ofthe Hamilton equations: 

-.. - -

In the momentum representation Eq. ( c)C\5) giv~s a second fundamental equation ofquantum 

mechanics: 
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-(~o;).) 

Eq. ( ) 
0
). ) corresponds in the classical limit to the second Hamilton equation: 

~ -:: ~ -=- ~H . - (_3o~) 
tAk ~f 

The general, or canonical, formulation ofEqs. ( d '\'\)and ( J 0}) is as follows: 

( ~) 1 ~ fi - (3o~) 

t - "+ -{ ~0-0 and 

which reduce to the canonical Hamilton equations: 

and 

'cl_ \-\ 

~\j 

4lL -=- ·~ov 
ctf ~ 
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The rotational equivalent ofEq.,(_:;).C\'t) is: 
. 

-A 

-37_] r _ {~lo) \·{ ( ~)+ ":: 0\ ) 

in which the canonical variables are: 1\ 
1\ . - (~tJ f, 3-z 

~ 
- r 

Fi{ rotational problems in the quantum mechanics of atoms and molecules, H commutes with 

~L so [ H ) -]7_ l -=- 0 (51~ 

in which case: f -o-- (3/D 

energy in the hamiltonian: 

A 

In order for dJI/df to be non-zero there must be a r dependent potential 

~~ +vlf)-l30 \-\ ~ 

so the hamiltonian operator must be: A J 

4 = - f':l A. 
\ ~ 

+ v(f) -(3ts) 
" 

where A is the lagrangi~ oRrator. In this c:: {" J. 

d_cf "Jr 
and Eq ( 1\o) gives the torque equation of quantum mechanics: 
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-

where T'\{are eigenvalues of torque. 

There also exist higher order quantum Hamilton equations as discussed in UFT 176, 

and quantum Hamilton equations for rotation in a plane. 

Finally as shown in detail in the influential UFT 177 on www.aias.us the force 

equation of quantum mechanics can be derived from the quantum Hamilton equations and is: 

(H \:_) cl~_ - ff -(HI?) 
~ 

where the force is defined by: 

cl'J ~p - (31~ ( \; '> ~H - -f -J - - ____. 
,.:;..------ -- ct:x tA._x. ~ ctx 

In the force equation the hamiltonian operator acts on the derivative of the Schroedinger wave 

function or in general on the derivative of a quantum mechanical wave function obtained in 

any way, for example in computational quantum chemistry, and this is a new method of 

general utility as developed in UT 175. 


