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Abstract

The interaction of vacuum or background structures with electromagnetic pro-
cesses is investigated. ECE electrodynamics allows the description of vacuum
structures on a classical level. A model for matter-vacuum interaction is pre-
sented. By means of the rich structure of general relativity it is possible to
describe ordinary electrostatic �elds by a �ux of the background vector poten-
tial. The scalar background potential is able to create enormous vacuum stress.
The interaction method allows for describing weak structures in space which
have been observed already over hundred years ago and re-con�rmed recently.
An explanation on the classical and quantum level is given which can account
for many observed features.

Keywords: ECE theory, Maxwell equations, potential, vector potential, clas-
sical vacuum, vacuum structures

1 Introduction

The advent of ECE (Einstein-Cartan-Evans) theory [1] lead to a better under-
standing of electromagnetic structures and processes embedded into spacetime.
Precisely, these are parts of spacetime itself which is described by concepts of
general relativity. Conventional electromagnetism is considered in a context of
special relativity which does not allow richer structures, for example structured
background or vacuum states. It has been shown that electromagnetism and
ECE spacetime background can be decoupled for many practical purposes [4].
This is the reason why Maxwell-Heaviside electrodynamics works so well. How-
ever, additional interesting e�ects are expected when a coupling can be inducted.
Finding such mechanisms and describing them by theory is a current subject
of AIAS research. In this paper we continue recent work concerning the ECE
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vacuum [2], [3]. In section 2 we present an approach for matter-vacuum inter-
action based on ECE theory. As a result it is shown that electric �elds are
accompanied by a vacuum �ux described by a vector potential.

Friedrich H. Balck [10], [11] has found weak spatial structures around bat-
teries, rotating magnets and even arbitrary bodies. This is a con�rmation of
extensive experiments of Reichenbach [8] and Korschelt [9] which were carried
out more than hundred years ago. These �ndings cannot be explained by con-
ventional physics and were ignored by the scienti�c community for a long time.
In recent years, Joseph H. Cater [12], [13] has explained a lot of these and other
�ndings by a qualitative theory of "soft electrons". These are vacuum structures
combined with a charge so that they can be impacted by electric �elds. Since
a quantitative description does not exist, Cater argued with qualitative argu-
ments only, which where logically consistent. In this paper we will try to give a
scienti�c explanation of at least some of these e�ects. For this we developed a
classical and a quantum mechanical model described in section 3. The results
are compared with experimental �ndings of Balck.

2 Electrodynamic theory of vacuum

2.1 Equations from the ECE engineering model

The �eld equations of the electromagnetic sector of ECE theory can be written
formally identical to the Maxwell-Heaviside equations but are valid in a curved
and twisted spacetime, in contrast to conventional electromagnetic theory which
is based on special relativity. In the engineering model [6] focus was laid on only
one polarization direction which leads to the well known form

∇ ·B = 0, (1)

∇×E + Ḃ = 0, (2)

∇ ·E =
ρ

ε0
, (3)

∇×B− 1

c2
Ė = µ0J, (4)

where the dot denotes the partial time derivative. In extension of standard
theory, the de�nition of the E and B �elds not only depends on the scalar and
vector potential φ and A but also on the scalar and vector spin connections ω0

and ω:

E = −∇φ− Ȧ− ω0A + ωφ, (5)

B = ∇×A− ω ×A. (6)

It has been shown in previous papers that the spin connections can be eliminated
in cases where the potentials behave smoothly which is the vast majority of
all applications cases. Then the electric and magnetic �eld de�nitions can be
reduced to the conventional form

E = −∇φ− Ȧ, (7)

B = ∇×A. (8)
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This is a consequence of antisymmetry in the �eld equations. This does not
mean, however, that the spin connections disappear. The spin connections are
present because we use a theory of general relativity. They can be computed
separately from the potentials via the equations

ω0A = ωφ =
1

2
(−Ȧ +∇φ). (9)

This means, we can solve problems within the framework of conventional potential-
based electromagnetic theory and study the spacetime structure of the problems
a posteriori. From (9) we obtain

ω =
1

2φ
(−Ȧ +∇φ) (10)

and by scalar multiplication of (9) with A:

ω0 =
φ

A2
ω ·A =

1

2A2
(−Ȧ +∇φ) ·A. (11)

Obviously both potenitals are not allowed to be zero, otherwise the spin con-
nection diverges. However this case can be arranged intentionally to obtain spin
connection resonance [1]. Obviously the existence of the scalar spin connection
is bound to the existence of the vector potential (Eq.(11)) while the vector spin
connection requires a scalar potential to exist (Eq.(10)).

As an example we consider the Coulomb potential of a single point charge
q. The corresponding potential is

φC =
q

4πε0r
(12)

with r being the radial distance from the charge. With

∇φC = − q

4πε0r2
er (13)

where er is the unit vector in spherical coordinates, we obtain from Eq.(10),
assuming A = const:

ω = −1

r
er, (14)

i.e. the vector spin connection has only a radial component −1/r and is a
multiple of the potential. It should be noticed that this spin connection is a
pure spacetime quantity and does not depend on the sign of the charge for
example.

2.2 The vacuum structure

There are two kinds of vacuum we have to discern in ECE theory: a vacuum on
the classical level (sometimes called empty space) and vacuum or background
e�ects of spacetime on quantum level. The classical ECE vacuum is de�ned by
the fact that all force �elds vanish:

E = 0, (15)

B = 0. (16)
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However this does not mean that the potentials vanish too. It has been shown
[2] (again by applying the antisymmetry of the �eld equations) that, in the
ECE vacuum, waves of potentials exist which are longitudinal in character. For
example the vector potential of vacuum waves can be written in the form

AV = k̂
∑
n

An exp (i n(k · x− βt)) (17)

where k̂ is the unit vektor in propagation direction of the wave, k is the wave
vector, β is a time frequency and An are Fourier coe�cients. For an arbitrary
direction this can be written in the form

AV =
∑
n

An exp (i(kn · x− βnt)) (18)

with reciprocal lattice vectors kn and frequencies βn.
The ECE vacuum is non-empty and may contain a high number of waves

of all frequencies, summing up to the huge background energy density inferred
from well known quantum processes, for example pair creation. Thus a bridge
exists between macroscopic and microscopic world.

2.3 Matter-vacuum interaction

In this paper we are interested in interactions between vacuum or background
potentials and electromagnetic �elds of ordinary electrodynamics. In earlier
papers [3], [4] it was shown that both worlds can co-exist without interaction.
Vacuum states can always be added to the solutions of Maxwell's equations
without changing the results. Here we change focus and search for possible
interaction e�ects. We choose an electrostatic problem as the simplest example
which can be described by the Coulomb law (3). Since these e�ects can only
be introduced by the potentials, we have to rewrite Eq.(3) with potentials by
inserting Eq.(7):

∇ · Ȧ + ∆φ = − ρ

ε0
. (19)

The vector potential is normally discarded in electrostatic problems. Now we
consider A to be the background potential AV of spacetime. Then we get
a coupling between the vacuum and the scalar potential φi which relates to
vacuum as well as ordinary electromagnetic e�ets:

∇ · ȦV + ∆φi = − ρ

ε0
, (20)

neglecting any backward dependence of the scalar potential φi on the vacuum
potential AV . We can compute the scalar potential φ, which is not a�ected by
the vacuum, by the ordinary Coulomb equation

∆φ = − ρ

ε0
. (21)

To obtain a solution of φi as well as for the vector potential AV we need an
additional vector equation. This can be either the Faraday law or the Ampere-
Maxwell law. The latter is equivalent to the Coulomb law and so gives no new
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information. Therefore we use the Faraday law, Eq.(2). Inserting the de�nitions
(7-8) however gives a zero sum at the left hand side. Therefore we have to use
the spin-connection versions of E and B, Eqs.(5-6), directly, which leads to

−∇× (ω0AV ) +∇× (ωφi)−
∂(ω ×AV )

∂t
= 0. (22)

Here we assume that there is only one spin connection ω0 respectively ω which
describes the curvature and torsion of space, i.e. vacuum and conventional
electromagnetic e�ects. From (9) we have

ω0AV = ωφi (23)

so that the �rst two terms in Eq. (22) cancel out. Inserting (10) for ω then
leads to

− ∂

∂t

(
1

2φi
(−ȦV +∇φi)×AV

)
= 0. (24)

Time integration of the vector equation with integration constant C gives

(−ȦV +∇φi)×AV = 2φi C(x). (25)

From the de�nition (17) it follows that Ȧ is parallel to A, resulting in

∇φi ×AV = 2φi C(x) (26)

or, with assuming φi to be time independent,

∇φi × ȦV = 0. (27)

With the ordinary electric �eld

E = −∇φi (28)

we can write then

E× ȦV = 0, (29)

which means that ȦV and AV are parallel to E:

E ‖ AV . (30)

Consequently, when a time-varying background potentialAV invokes an electric
�eld E (and vice versa), both �elds are parallel to each other. In case of a curved
and twisted spacetime, the vector spin connection ω is also in parallel to AV

and E due to Eq.(23).

2.4 Electric vacuum stress

It has been shown ealier that vacuum potentials corresponds to a mechanical
stress [5]. Denoting the scalar vacuum potential by φV , the vacuum condition
E = 0 leads to a condition between both the vacuum and vector potential
according to Eq.(5):

−∇φV − ȦV − ω0AV + ωφV = 0, (31)
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which in case of stationary �elds leads to

∇φV − ωφV = ω0AV . (32)

If a di�erential equation of second order is preferred, applying a gradient oper-
ation on this equation leads to

∆φV − (∇ · ω)φV −∇φV · ω = ∇ω0 ·AV + ω0∇ ·AV . (33)

This can be considered as a forced oscillation with damped resonance if ω is
assumed to be negative. In one dimension this equation reads

∂2

∂x2
φV − (

∂

∂x
ωx)φV − (

∂

∂x
φV )ωx = (

∂

∂x
ω0)AV x + ω0(

∂

∂x
AV x) := f(x). (34)

In this equation we can freely choose the terms at the right hand side by a suited
choice of the spacetime functions ω0 and AV x. Denoting the right hand side by
f(x) we can further assume certain forms of ωx. Setting ωx to a constant wave
number κ and the right hand side of the equation to zero:

ωx = κ, (35)

f(x) = 0, (36)

we obtain the simple equation

∂2

∂x2
φV − κ

∂

∂x
φV = 0 (37)

which has the solution

φV = φ0 exp(κx) (38)

with an integration constant φ0. This is an exponentially growing solution,
indicating that the scalar vacuum potential can increase to very high values. A
similar result had already been found in [2]. Of course this result depends on the
sign of κ which was assumed positive here. The same result is obtained when we
start from Eq.(32) directly without taking an additional derivative. According
to [5] an electric potential is the equivalent to a mechanical stress. This means
that it is possible to generate a very high vacuum stress. If φV comes to lie
into the region of 1020V , more direct mechanical e�ects are expected, due to
the mechanic-electric equivalence of ECE theory.

3 Comparison with unconventional experimental

�ndings

In the following we try to give �rst explanations for experimentally found space-
time structures.

3.1 Derivation from ECE electrodynamics

It has been shown in the preceding sections that ECE theory predicts a "space-
time �ux" in terms of potentials which can be attributed to structures of the
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electromagnetic vacuum. This non-empty vacuum, which is also supported by
quantum mechanics, may be the reason for weak spatial structures for which
no useable detectors exist. One main task in future would be to de�ne and
construct such detectors. So far these structures are only perceivable by sen-
sitive people. Nevertheless the results are repeatable. As already discussed in
section 1, these �nding reach back to the 19th century [8], [9] and have ben
acknowledged recently [10], [11].

Fig. 1 shows the force �eld of a dipole with possible vortex structures similar
to �uid dynamics. Such structures have been found for example in static electric
and magnetic �elds [10]. In Fig. 2 the experimental result for a bar magnet
are shown. The toroidal structure coincides with the suggestion of Fig. 1. The
structure requires a rotation of the magnet and expands with increasing rotation
rate. This reminds strongly to the rotational part of the ECE magnetic �eld:

Brot = −ω ×A. (39)

The spin connection ω represents a rotation axis in the simplest case [6]. The
magnetic �eld strength grows with rotation frequency. According to Cater [12],
[13], magnetic �eld lines are sources of "soft electrons". This motivates a de-
scription based on spacetime geometry as inferred by ECE theory. The bar
magnet creates a magnetic dipole �eld. This �eld serves as a "second source"
for an electric structure. Exactly this can be formulated by the ECE �eld equa-
tions if the "second source" is identi�ed with the homogeneous current of ECE
theory. The extended Faraday law, Eq.(6), with vacuum �eld EV , then reads

∇×EV + Ḃ = j, (40)

where j represents the homogeneous current which is magnetic in nature [6].
Setting this in proportion to the magnetic �eld of the magnet:

j = αB, (41)

and assuming a stationary state, leads to the equation

∇×EV = αB, (42)

which can be solved numerically. It is expected that a torus-like structure for the
vacuum-generated "second electric �eld" EV comes out. This is the �rst quanti-
tative attempt to explain the weak structures found by Reichenbach, Korschelt
and Balck. It is planned to continue this work by numerical calculations.

3.2 Derivation from quantum mechanics

Besides structures with rotational symmetry as shown in Fig. 2, there have
also been found macroscopic asymmetric structures around symmetric bodies,
for example cylindrical bodies, see Fig. 3 [11]. From a standpoint of classical
mechanics or electrodynamics, it is not plausible how such a breaking of sym-
metry can occur. Such e�ects are only known for eigenstates of vibrations but
here no exciting force of periodic kind has been detected. We therefore try an
approach of an "extended quantum state". The weak vacuum states called soft
electrons by Cater are assumed to be much bigger than ordinary electrons but
have an elementary quantized charge of an electron. Therefore we handle these
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Figure 1: Force �eld of a dipole [7] with hydrodynamic vortex.

structures in a quantum picture. Electrons are fermions and, in the stationary,
non-relativistic case, described by the Schroedinger Equation

Ĥψ = Eψ (43)

where the Hamilton operator Ĥ is de�ned by

Ĥ = − ~2

2me
∇2 + V (r). (44)

V (r) is the potential of the atomic nucleus. The solution of Eq.(43) for Hydrogen-
like states with ordinal number Z is

ψ00 =
1√
π

(
Z

a0

) 3
2

e−
r Z
a0 (45)

for a 1s orbital. It is characterized by the Bohr radius a0. In the following
we will search for a re-scaling of the Schroedinger equation so that quantum
solutions take a macroscopic size. The Bohr radius is de�ned by

a0 =
4π ε0 ~2

e2me
. (46)

This allows replacing the factor ~2/2me in the Hamiltonian by an expression of
the Bohr radius:

~2

2me
=
a0 e

2

8π ε0
. (47)

Please note that this expression does not depend on the electron mass me any-
more. We consider a scaling of the Bohr radius replacing it by an arbitrary
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Figure 2: Toroidal structure observed around a rotating magnetic dipole [10].

Figure 3: Spatial structures observed around a glass of water, evoked by the
glass and the water material [11].
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length L0 and inserting the expression in the Hamiltonian:

Ĥ = −L0 e
2

8π ε0
∇2 + V ′(r) (48)

where the potential has to be re-scaled appropriately. In this way we obtain
a "Schroedinger Equation" valid for arbitrarily scaled dimensions. E�ectively,
the angular momentum has been re-quantized to larger values. Although this
is a highly hypothetical operation, it may explain why structures like atomic
orbitals with s, p, and d character have been found by Balck [10]. Unusual new
results may require unusual explanations. Future research will hopefully show
whether these attempts were justi�ed.

4 Summary

The interaction of the ECE vacuum with static electric structures was investi-
gated. Spacetime �ux was described by a vacuum �ux predicted by ECE theory.
This is in line with Tesla's ether �ux, which in turn can be described by a vector
potential of the vacuum. Such results require existence of curvature and torsion
of spacetime which is not contained in simple Maxwell-Heaviside theory.

First theoretical explanations for experimentally found spacetime structures
were given. Unfortunately such structures are barely measurable by instru-
ments, not because they are not physics, but because no suitable instruments
have been developed for their detection. Therefore these e�ects are accessible
only to persons who are sensitive enough to percept them. Such experiments
have been executed in high number by several groups so that repeatability is
guaranteed. It could be shown that essential structures are explainable by clas-
sical and quantum approaches.

A more detailed application of ECE theory could reveal the meaning of
polarization indices in the engineering model [6]. There are four states of po-
larization for E,A, etc. named Ea,Aa, with polarization index a. Balck found
four such states, and ECE theory predicts four.
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