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Synopsis

This arucle is concerned with the experimental and theoretical attempts which have re-
cently been made to solve the molecular dynamical problem of how systems of N (=10%) in-
teracting molecules evolve in fluids and mesophases such as plastic and liquid crystals. The
development in the 1960s of computerized Michelson interferometry has closed the gap be-
tween the microwave and mid-infrared region of the electromagnetic spectrum. The region 1
to 300 em ~' is of particular interest to molecular dynamicists since the power absorption
coefficient, a(w), observed here in liquids as a broad band (the Poley absorption) is the high-
frequency adjunct of the dielectric loss, £”(w), observed in the microwave and lower-
frequency regions. As a result of the relation

where n{w) is the refractive index and ¢ the velocity of light, high-frequency absorptions
which are barely visible in measurements of £"(w) appear in great detail when al(w) is
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ample, a feature of this type of absorption is that autocorrelation functions

should possess Taylor expansions in time 7 which are even up to 1", at least.
The orientational correlation functions for extended diffusion models,

however, expand evenly up to ¢°.
Some excellent zero-THz data for the strongly dipolar species CH,Cl,

are now available, and these are used to evaluate the following models in
addition to extended diffusion.

1. An approximant of the Mori continued fraction resulting from an ex-
ponential second memory for the orientational correlation function.

2. The approximant equivalent to the model of itinerant libration.
Mathematically, this results from an exponential second memory for
the angular velocity autocorrelation function. Physically, the situation
is described equally well by the Brownian motion of two interacting di-
poles.

3. As liquid densities are attained, the Langevin equation for the inertia-
corrected rotational diffusion of the asymmetric top (developed within
the last two or three years). This is a zeroth-order approximant, and
even with correction for inertial effects is unrealistic at THz frequencies.
Without the inclusion of inertial effects, the power absorption becomes
a plateau at high frequency so that the theoretical zero-THz band i1s

effectively infinitely wide.

Techniques involving Raman /infrared band broadening, light scatter-
ing, NMR relaxation, and classical dielectric loss measurements are rela-
tively insensitive to the short-time details of molecular rotational dy-
namics. Thus data over an extended range of temperature and number
density are often needed before departures from inertialess rotational dif-
fusion may be observed with any precision. We develop this point by com-
paring results for the rotational dynamics of CH,Cl, liquid obtained from
the different techniques available. In contrast to the confused and often
contradictory deductions drawn from some other fields, the zero-THz pro-
file discriminates much more readily between models, and is thus at the
very least a useful source of complementary information. A self-consistent
appraisal is attempted within the framework constructed by Mori. This
aims at a satisfactory evaluation of such quantities as the mean-square
torque and its derivatives, so that some statistical assessment may be made
of the potential part of the total N-particle Hamiltonian. At present, fea-
tures of observed spectra are reflected in model correlation times which are
often physically meaningless (e.g., the Debye relaxation time or the time
between elastic collisions of extended diffusion) and sometimes directly

contradictory.
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Approach to the Ligquid State via Mesophases
(Liguid and Plastic Crystals)
and Glasses

These mesophases restrict the degree of rototranslational freedom available
in the isotropic fluid. For example, some solid lattices of dipolar molecules
with pseudospherical van der Waals contours are rotationally disordered
but translationally ordered. Liquid crystals in the smectic. cholesteric, and
nematic phases are composed of molecules which are rotationally hindered
(about their short axes) but retain a considerable degree of translational
freedom. This is especially so in the nematic phase, where, in the absence
of external magnetic and electric fields, the director axes meander in space.

One of the most far-reaching consequences of zero-THz spectroscopy of -

these systems is the realization that the whole loss or absorption profile
must be regarded as a continuous function of frequency, arising from an
ensemble dynamical process which itself evolves continuously in time from
the initial +=0. In this context we develop some model calculations of the
absorption expected in the nematic phase on the basis of restricted rota-
tional freedom. Preliminary calculations suggest that the potential well ex-
perienced by a nematogen, for example, in the field of its neighbors, needs
to be considerably narrower and steeper than that of isotropic dipolar
liquids. The well depth estimated from best fit to the zero-THz data agrees
surprisingly well with a rough calculation using a potential of the form

V=aexp(—br)— —EE
;

in which the only intermolecular interactions considered are those between
the benzene rings of the nematogen.

In supercooled solutions and glasses of some small. dipolar molecules
(such as CH,Cl,) it is remarkable that the evolution of the rotational dy-
namics of the dipolar solute extends over as much as 10 to 15 decades of
frequency. This is a direct consequence again of the result that for a well-
behaved orientational correlation function, low-frequency losses must ex-
tend analytically to the THz region, where, as power absorptions, they rise
above the Debye plateau and regain transparency typically at 200 to 300
em™'. Thus any viable model of the rotations in glasses, liquid crystals,
and disordered or plastic solids must be capable of linking loss peaks sep-
arated in this way. For example, the dielectric loss observed in a glassy
solution of CH,Cl, in decalin has been measured recently in the kHz and
THz frequency regions at 107 to 148°K. The low-frequency part of the loss
curve exhibits a peak which shifts upward about two decades with a 4°K
increase in temperature, and at the glass-to-liquid transition temperature
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moves almost immediately out of the audiufrequgnc?' range to the micro-
wave. The far-infrared (or THz) part of the loss is :issplaced b?r'ﬂﬂ to 116
cm~" in the glass as compared with the liquid at 293°K. In addition, there-
fore, to the well-documented primary and secondary Enss_ﬁ in glasses and
polymers there exists in general a tertim process at far—mffa.red frac[unn—
cies analogous to the Poley absorption in liquids. Using the itinerant ]_Jbra-
tor model, features described above can be repmduouq, and quite satlsfav.::-
torily so in such specialized cases as fluorobenzene dissolved in a plastic

crystal of benzene.

Molecular Dynamics Simulations

ility density functions are simulated with an atom-atom pc!tenhal
anzrgs;l::rt:d witht}n;nﬁ calculated analytically frnn? the itinerant librator
model discussed above. The former are nnn-Gausmjtn and the_ latter are
Gaussian in nature. Simulations are also used In evalufxtmg trans-
lation—rotation functions such as {e'™"P (u(z)-u(0))), useful in the theory
of neutron scattering. Here u is the dipole unit vector, q the wave vector,
and r the position vector. The use of molecular d;,rnmcs is cxtenf:[ed to t_he
numerical evaluation of the planar itinerant ﬂscﬂlatm: system, with the in-
tention of achieving numerically what is anal}:ﬁca!ly mtractal:rlc. |
Finally, simulations are carried out in liquid nitrogen of slpgle:parucla
and collective correlation functions such as thusu_e: of the longitudinal an}d
transverse spin density, and current density, which for a struc‘:tured fluid
contains a rotational part. The coupling between transverse spin and cur-
rent density has also been simulated as the _h}rdmd‘ynamc cgunterpart of
(@(t)¥(0)"). The nonvanishing of the matrix possibly explains the zem}
frequency splitting observed recently in the depolarized spectrum o

scattered light.

. GENERAL INTRODUCTION. THEORETICAL AND
EXPERIMENTAL BACKGROUND

To understand in detail the motions and interactions of about 10% mole-
cules, we would have to follow each trajectory separately over a pFnud of
time from the initial 7=0. In a gas dilute enough so that interactions be-
tween each molecule are negligible, this is not an awesome task, since the
translation of the center of mass and :nd-nver-:Fd molecular rotation of
each molecule are for long periods of time undisturbed. T!'IE uanslat}nn
and rotation may safely be described saparat_el}r. For certain geometries,
the Schrodinger equation may be solved to yield ‘thel ;amhu set of rota-
tional absorptions peaking in the far—infra.rr:d region ™ of ﬂ:'lﬂ* ele:ctrmfnag-
netic spectrum for some of the commoner dipolar gases. This region, from
lem™' (30GHz) to about 300cm ™, is often known as the submillimeter or
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TH:._A.S :I‘.ht gas is compressed, however, the discrete nature of these ab- ]
sorption lines disappears, until at liquid densities, a broad band is observed |

peaking with a root-mean-square angular velocity much higher than that of

the /=1 peak of quantum theory. Figure 1, taken from a paper by

Gerschel,? illustrates this process along the gas-liquid coexistence curve
Aftler solidification, the broad band may split into a lattice of modes de-
scribable in terms of cooperative torsional oscillation of large domains of
molecules, with the center-of-mass translation of each strongly hindered

| II"_ we represent the absorption in terms of dielectric loss, the fam.lhar
liquid-phase Debye relaxation curve,* or a variant thereof, appears, peak-

Ing at a freguency much less than that of the gaseous root-mean-square an-
gular velocity. As the density of the liquid increases, the loss peak moves to

a lower frequency, while the peak in the power absorption coefficient a(w)
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Fig. 1. Far-infrared spectra of CHCl,: (1) to (5) liquid, (6) and ; ity i
g/cm’. (1) is 233°K, d=1.62; (2) 300°K, d=1.47; (3) 353‘1{:{&]- IJ&EdT;EfFLh:'ET;W{;
534°K, d=0.65; (6) 543°K, d=0.38; (7) 517°K, d=0.2; The dotted line represents ﬂ:;a ;ma-
rotator absorption at 534°K. The dashed line represents the “Debye plateau” at 300°K (see
text). [Reproduced by permission from A. Gerschel et al., Mol Phys., 23, 317 (1972).]
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does just the opposite. Even in fluids of nondipolar molecules such as
CCl, and benzene, whose end-over-end rotations do not cause infrared or
microwave absorptions in the infinitely dilute gas, a liquid-phase broad
band appears® (Fig. 2). Therefore, the loss and power absorption
coefficient may be used as measures of molecular interaction in at least

{wo senses.

1. The gradual inhibition of rotation and interruption of free translation,
leading to the inevitable interaction and coupling between these free-
doms as the liquid state is approached. Their subsequent decoupling
once more in the solid, where center-of-mass translation over long dis-
tances is rare and slow.

2. The development of electrostatic and overlap interactions which give
rise to temporary, induced dipole moments, and thus to rotational far-
infrared absorptions in nondipolar gases® such as N, and solvents such

as CCl,.

lem ')

Fig. 2. Far-infrared spectra of CgHsF: (1) to (7) liquid, (8) and (9) gas; d the density in
g/cm’. (1) is 239°K, d=1.08; (2) 300°K, d=1.024; (3) 397°K, d=0.89: (4) 459°K, d=0.79;
(5) 513°K, d=0.68; (6) 549°K, d=0.548; (7) 559.5°K, d=04: (8) 559°K, d=0.3; (9) 619°K,
d=0.184. The dashed line is as in Fig. 3. [Reproduced by permission from Mol. Phys., 23, 317
(1972).]
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To interpret these macroscopic observations in terms of molecular mo-
tion we must resort to statistical methods since, as pointed out by Hansen
and McDonald,” the description of each individual molecular trajectory in
the fluid, even if possible, is not desirable, on the grounds that a building
large enough to house the billions of neatly plotted three-dimensional
graphs could not be found. The major problem confronting the liquid-state
dynamicist is not one of building a large enough library, but of developing
an expansion of the Liouville equation free of numerous phenomenological
variables (adjustable for best fit), which gives a consistent description of
data from all sources. Such a process should also yield a satisfactory func-
tional for the intermolecular potential energy. A secondary problem;
hardly less formidable, is that of treating the “internal field.” This means
that whenever a solution describing the ensemble dynamical situation is
found at the microscopic level, the relation of the displaced field to the
measuring field must also be predictable before the macroscopic band
shapes can be calculated. A discussion by Scaife® is the clearest formula-
tion of this problem in the author’s experience. We summarize it here at
the outset.

The electrical interaction between the dipole and its surroundings has no
influence on the dynamical behavior of the molecule in a nondipolar
medium because the field fluctuations in the cavity occupied by the dipole
are so rapid as to leave the dipole unaffected. The dipole and the reaction
field it sets up in the surroundings are parallel at all times. Thus the experi-
mentalist wishing to study in the zero-THz waveband a dipolar molecule in
a dilute nondipolar solvent may use a theory of dipole autocorrelations.
When the molecule is surrounded by a dipolar medium of the same molec-
ular type, however, the dipole will be strongly influenced by the fluctuating
cavity field. In addition, the dipole itself will polarize its surroundings and
thereby produce a further cavity field which will in general not be parallel
to the dipole because of the dispersive nature of the medium. A division of
the cavity field into a component arising from the surroundings and one
generated by the reaction of the surroundings to the preceding motion of
the dipole is valid only if saturation effects are neglected. No such division
is possible unless the surrounding medium responds in a linear fashion to
all applied fields.

If, for the sake of argument, all dynamical memory is neglected, and a
Langevin equation accepted for the motion of the dipole, in two dimen-
sions one has the relation

16+ 86 — pF(¢)sin(y—8) =A(1) (L.1)

where I and £ are constants, A a random force, F() the electric field acting

" St
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on the dipole p, Y the angle between this field and a particular fixed direc-
tion, and # the angle between this direction and the dipole. The field con-
sists of a fluctuating cavity field F_(r) and a reaction field F (1), whose
magnitude and direction depends on the motion of the dipole up to time .
Clearly, we cannot calculate the dielectric permittivity e(w) from a solution
of (L.1) since such a solution would require a knowledge of the fields F_(7)
and F (1), which themselves depend on e(w). In other words, the most we
may hope for analytically is an approximate solution for e(w) based on
some self-consistent technique. Some notable advances in dealing with this
dipole—dipole coupling problem have been made by Zwanzig,’ Bellemans
and others'® and Cole,"' who consider a lattice of translationally fixed di-
poles. Deutch'? has summarized the situation up to 1976. Coffey'® has re-
cently extended the work of Budo to show that a distribution of macro-
scopic relaxation times is to be expected when dipole-dipole coupling
effects are present. Scaife® points out, however, that there seem to be cases
(such as water) where dipole—dipole coupling is very strong but only one
macroscopic relaxation time appears. This suggests that, in such cases, the
concept of a “microscopic relaxation time” is meaningless, and that we are
in fact dealing with a cooperative process involving many molecules.

A. Liouville and Fokker-Planck Equations for the Canonical
Ensemble

Setting aside for the moment the vexing question of the internal field, we
proceed in this section to describe the fundamental equations of classical
mechanics for the N-particle ensemble. These equations must be solved by
approximate methods, the purpose of which is to extract a correlation
function (or spectrum) with the maximum of realism and the minimum
number of adjustable, or phenomenological variables. Our justification for
the use of classical rather than quantum mechanics has been given by van
Vleck and Weisskopf,'* who outlined conditions under which rotational
quantum lines in the microwave and far infrared give way to broad loss
bands in the dense fluid. Some remarks by Lobo, Robinson, and
Rodriguez'® illuminate this question with particular clarity. Suffice it to say
that classical theory proves adequate except in such cases as'® HF and
NH,; dissolved in liquid SF,, where the fluid state far infrared contours
clearly show up the presence of residual, broadened J—J+ 1 absorptions
(Fig. 3). We shall refer to these specific examples later, and we use as a de-
scription some classical perturbations of the quantum delta functions.

Consider, therefore, a linearly independent set [4A(1)] , j=1,...,n, of
real-valued (implicitly) time-dependent dynamical variables of the given
N-particle system. Assume that an ensemble average (- can be defined
for the system and that the set of all possible dynamical variables is a real
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Fig. 3. (a) © Experimental absorption for CCl,(1) at 296°K. (—-), Mori 3 variable theory
(Section V); (b) (©, x), absorption observed for benzene(/) at 296°K; (--), theory; (c)
(@, %), absorption of C5,(/) at 296°K; (--), theory; (d) (©, x) absorption of cyclohexane at
296°K. The high-frequency proper mode is extrapolated using a model of collision-disturbed
vibrators. This technique is also used in (e) and (f); (), theory; (e) (@, x), absorption of
trans-decalin at 296°K; (----), theory; (/) (©, x), absorption of 1,4-dioxan at 296°K; (—).
theory. [Reproduced by permission from J. Chem. Soc. Faraday Trans. 2, T2, 1196 (1976).]
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Hilbert space in which the inner product is defined by (4,B)={(AB).
Without loss of generality we may assume that each particle is a molecular
asymmetric top within whose rigid but polarizable framework is embedded
a dipole vector p. The set [4,(f)] spans an n-dimensional subspace of the
Hilbert space. Each variable obeys the classical Liouville equation of mo-
fion:

A(t)={A,(1),H}=iQA,(1) (1.2)

where H is the Hamiltonian of the system and iQ the Liouville operator.
The formal solution is

A(1) =exp(i21) 4,(0) (1.3)

where the propagator exp (i¥¢) is an orthogonal operator. The time evolu-
tion of A,(r) is therefore a rotation in Liouville space, with

A()A(1))={4(04,(0)>  jk=1,....n (1.4)

From now on we confine the discussion to correlation functions of the
form of (1.4), but the general theory is equally applicable to multiparticle
correlation functions, and may be used to determine the relation between
the two different kinds, as for example in the paper by Kivelson and
Madden.'” This problem is closely linked with that of the internal field.

If A() denotes the n X 1 column vector with elements A,(¢), and A7(/) its
corresponding row vector, we let (A(1)A 7(¢))> denote the n X n matrix with
elements (A4,(1)A4,(1). From (1.4) it follows that

(A(1)A7(1)) =<A4(0)47(0)) (L5)

Mori'® shows that 4(¢) evolves in time according to the equation
. I
A0 =iA(1) = [ dr (1= A7) +FA() (L6)

Because of its similarity to Langevin’s equation of 1906 for translational
Brownian motion,'” this is sometimes known as a generalized Langevin
equation. It is a form of the Liouville equation which proves particularly
useful in generating approximate solutions, or models, of the required au-
tocorrelation function. In (1.6) ©, is a resonance frequency operator, the
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matrix kernel ¢,(#) is a memory function (or effective Liouvillian), and
F,(?) is a generalized random force or torque propagated in a special way
from A(0). These quantities are specified in terms of the projection opera-
tors P, Q defined by

PG={(GAT(0)){A(0)A7(0)> "A(0)

Oo=1-P

where P projects an arbitrary vector G into the subspace spanned by A(0),

and Q projects into the orthogonal complement of this subspace. The ap-

propriate relations are

i, =<A(0)AT(0)>(A(0)A7(0)) !
F (1) =exp(iQ 1) QA(0)
$a(1)=<(F,(1)F1(0)>(A(0)AT(0))" (L7)

The meaning of the generalized force F,(r) should not be confused with
that of generalized force in classical lagrangian dynamics. In the Mori for-
malism of (I1.6) and (1.7), F,(0) is the component of A(0) orthogonal to
A(0), whereas F,(7) is propagated from F,(0) by the special propagator
exp(iQ Lr). It is easily shown that

(FA(1AT(0)> =0 (L8)

The simplest physical realizations® of (1.6) occur, for example, in the
rotational Brownian motion of a spherical top, or a disk about a fixed axis
through its center perpendicular to its plane. Equation (1.6) then becomes

% + fﬂ ‘dr oy(1—1)I(7) =Fy() (19)

where A=J is the angular momentum of the rotator, the operator £, 1s
null, ¢,(¢) is a time-dependent friction tensor, and F(¢) is a random driv-
ing torque of finite correlation time with mean {F,(¢)> =0. Equation (1.9)
is such that the components of each vector are referred to principal body
axes, and D/ Dt denotes rate of change relative to these axes, so that
DJ,/Dt=J,. In the case of the disk there is only one component, referred
to the fixed axis. For more complicated geometries nonlinear terms appear
in (1.9). Asymmetric-top Brownian diffusion has been treated in
definitive detail recently by Morita,>' and McConnell and others? for the
case where the memory matrix ¢, consists of delta functions in time. The
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more general angular equation
J(1)— (1) + J; ‘droy(t—1)I(r)=F,(1) (1.10)

is formally valid for the asymmetric top, but then the quantities Q,, ¢,, and
F; may not have obvious physical meaning.

All the approximations of (1.6) prior to this have been concerned either
with pure translation or pure rotation, the latter being complicated consid-
erably by geometrical factors. Some popular models of the last decade are
molded into the Mori framework in Table I (see Section I.B). In the next
section we extend the formalism to cover rototranslational movements by
deriving suitable approximations for the correlation functions associated
with the column vector [Ll It turns out that the zero-THz loss in dipolar

solutes 1s markedly dependent upon the degree of rotation-translation
coupling. Models devised in terms of pure rotation thus only oversimplify
the dynamics considerably.

Reverting to general A4, (1.6) can be solved using elementary Laplace
transforms, giving

A(1)= C,()A(0) + f "dr C\(t—1)F (1) (L11)
0
where C,(7) is a matrix of normalized correlation functions given by

CA)=2"{[s= iR +84(s)] ')
= (A(1)AT(0) (A (0)AT(0)> " (L12)

Here :L{s} denotes the Laplace transform of ¢,(r) and ¢ ' denotes inverse
Laplace transformation.

If the vector F,(¢) is a multivariate Gaussian process with mean (F (1))
and if the initial vector A(0) at time r =0 is given, it follows from (I.11) that
A(r) at time ¢> 0 is also a multivariate Gaussian process with mean

(A(1)) = CA(1)A(0) + fﬂ dr Cy(1—1)(F (7))

(The Gaussian assumption is fundamental to further progress in this sec-
tion, but later we present molecular dynamics data for N, which clearly
shows that it is only approximately valid.)

Restricting ourselves to the special case (F,(7)> =0 admits the treatment
of rotational Brownian motion, for example, and simplifies the algebra
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generally. This remains true for rototranslation. Then A(r) is conditionally
distributed with probability density function
P(A(1); t|A(0)) = (2m)V/P"(det V(1)) /*

x exp| — 3 (A1)~ Co(DA©0)V ~'(1)(A(1) = CA()A(0) ]

(1.13)
with variance—covariance matrix
V(1) ={(A(t) = Co(1)A(0))(A(1) — CA(DA(0))" >
=(A(0)A(0)) — C,(1)<A(0)AT(0)>C (1) (I.14)

We see from (I.14) that the elements of V(r) can be calculated directly
from the elements of the correlation matrix C,(¢), so that if the elements of
C,(1) can be found experimentally or otherwise, the conditional probabil-
ity density function p(A(¢);f|A(0)) can be calculated.

It is clearly essential to know whether or not the generalized force F,(7)
is a Gaussian process. This depends both on the nature of A(r) and on the
geometry. For example, if we consider the angular velocity w of the sphere
or disk mentioned above, the corresponding random driving torque F_(f)
may be assumed Gaussian (although non-Markovian), so « is conditionally
Gaussian. If, however, we consider the total Euler angle

8(t)= fﬂ "0 (1)dr

it is not obvious whether Fy(t) is Gaussian. Here # is the total angle turned
through in time ¢ rather than the angular orientation which is restricted to
the range — 7 < <=. In fact, the angular distribution has a wrapped nor-
mal distribution which we shall consider later.

One possible way of investigating the Gaussian or non-Gaussian nature
of F,(7) for a given A(1) is to expand the operator exp (iQ 2r) in (1.7). Since
Q and € commute, and Q"= Q for m > 1, we have

F, ()= OA(0) + rQi2A(0) — PO LCA(0) + - - -

As a simple illustration we may consider Fy(r) for the disk rotating in its
plane under a Gaussian restoring torque I'(1)= — 7{#(¢)— 8(0)], where T is a
constant. The Liouville operator is

d 0

Al == fﬂ—a‘é = TH_BE
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where / is the moment of inertia of the disk, so that

(i)™ =(—It)"f
(EE)EM‘F l.ﬂ“: Im( L T)m+ Iﬂ

Since 08(0)=0 and O#(0)= (0), it follows that

Fy(1)=6(0)] 1 2—'!1T11+ E’-!-(;f}lx*- - ]z 6(0) cos (1r)'*]

Similarly, we can show that Fj(r)=(I'(0)/)cos[(Ir)"/*), so that Fy(t) is
Gaussian while the nature of Fy(t) is determined by that of 6(0).

'I'hc conditional probability density functions discussed above are the
most informative functions which can be extracted from a statistical treat-
ment of the microscopic ensemble dynamics, more so than the correlation
functions, which are integrals over the density functions. We now show
that these density functions satisfy a generalized diffusion equation, similar
to that of Fokker-Planck.? This extends our earlier analogy with the
classical theory of Browian motion.

To simplify the analysis, we write C=C a(?), make the change of vari-
able B=C "'A, and introduce the probability density function g(B; ¢|B(0))
==h p(A; t]A(0)). Clearly, B(0)= A(0) since C(0)= 1. Differentiating g, we find
that

d I =1 1 4
E":i =—1|(detV) %{dﬂt V) |g—3(B—B(0))M(B—B(0))q
(L15)
and
dg
g~ ~ M(B—B(0))q

Here M= C"V ~'C. Using the identity

MM+ %(M"}Mﬂ]

d .
= {E(M-l}% J = [tr(M ~'M)—(B~B(0)) M(B—B(0)) |¢
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From the identities

(dety) ' < (detV)=t(V V')
and tr(V W) +t(M ~'M)=2tr(CC ")
(I1.15) may be rewritten in the form

Mt i, 1 a8
i Sl o [m[‘” )98 h15)

Returning to the vector A, we find that

i a"’+§i-¢c“.&

ar o
0 [ 418213 Jcdp-nore
o aB'[E(M }anl HA[C::H{M T

which upon substitution into (1.16) finally gives the generalized Fokker-
Planck equation

14

3 T
L= - - (CACS'AP)+ 5 31

dt

B s
-[E*E{M ')CIH—H (L17)

Equation (I.17) has the associated initial condition
p(A; 0]A(0))=8(A—A(0))

where 8 denotes the Dirac delta function.

Equation (I.17) is exact for non-Markovian, Gaussian systems. Particu-
lar forms of this equation have been discussed by Adelman®* when the ele-
ments of A are uncorrelated, and also for phase-space variables of the form

A= : . Here we shall be concerned mainly with orientation, angular
velocity, and coupled angular and linear velocity. For this purpose we need

probability densities of the form p(A(/); Iiﬁ(ﬂ),ﬁ([})} as well as those of
(1.13). Writing A for A in (1.6), we obtain

A(r)=iQA(1) - J; ‘dré(t—T)A(T) +F;(1)
which may be solved to give

A(1)=A(0) + X .(1)A(0) + J; ‘dr X i(t—7)F;(7)
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where X (1) is a cross-correlation matrix given by
Xa() =27 [ =i +sdi(5)] '} = (A(DAT(0) )<A(0)AT(0)> "
so that

Xi(1)=C;(1)
and Xi(t)= fu 'Ci(r)dr+ X;(0) (L18)

X (1) is also related to C,(¢) by

Xa(1)=— C,(1)(A(0)AT(0) > (A(0)AT(0))
sothat  Co()=1- [ "drX;(r)<A(0)AT(0))(<A(0)A(0)) "

and Ca(1)=— CA(1)<A(0)AT(0) ) CA(0)AT(0) )"
The conditional probability density function

PAD: AA(O) A) = (2r) /et (1)~

X exp[ —L(A() = A(0)— X i()A(0)) W ~'(¢)
x (A(1) — A(0) - xi(;)i(cu))] (1.19)

is inferred when {F;(¢)) =0, with variance—covariance matrix

W(1)={(A(1)— A(0) — XA(A(0))(A(1) — A(0) — Xy(1A(0)) ">
=2(1— C,(1))CA(0)AT(0)) — X 4 (1)<A(0)AT(0) > X (1)
=2 ["dr Xy (r)CA(O)AT(0)) — X4 (1)<A(DAT(0) > X;(r)  (1.20)
0

Thus p{A{r);ﬂA(ﬂ},i{D}) is readily calculated from (1.18) to (1.20) from a
knowledge of C,(r). This probabilty density also satisfies a generalized
Fokker—Planck equation analogous to (1.17).

B. The Mori Continued Fraction

Mori'® has shown that the Laplace transform, C,(s), of C,(¢) has a con-
tinued-fraction representation, and that the time evolution of the vector
A(1) is determined by the singularities of C,(s). Tractable approximations
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to C,(r) are thus generated by finite approximants of the mnfinued frac-
tion, and it is this basic idea which is the essential leaven running through

this chapter. The derivation of the continued fraction has been discussed in
this series by Berne and Harp,” so that we quote the result:

Culs)= 2, [(A()AT(0)><A(0)AT(0)) ']
= 1
e 'I
5 lﬂu-*l‘- — I i l([}}
5= iy 1 "#&I{D}
- = ‘Pan-100)
E_-Iﬂn—l"-cﬁ,.n('ﬂﬁbﬁ.n(ﬂ) = {1_21}
Here
Q=T AL !
and da (0) =LA XL, _ 1] >
where the f vectors are given by
f,=A Py=P
R
[=|1- 3 A lieg_, 21 (1.22)
k=0
- g 1
i=|1- 3 AJi%1, j21 (1.23)
k=)

where P, projects into the subspace spanned by f,(0). From (1.22) and
(1.23) we find

f,=A
fi=A—[(AAT)(AAT)"']A
f,=A—[CAAT)CAAT) ™!+ AT KT ) ™!
—(AATYCAITY(AATY (IIT > ]A
— [CAAT)CAAT) ™1 —(AATH*(AAT)™?
—CAAT Y CAIT Y CAAT )~ T > !
+ (AAT Y CAIT Y (AATY X7 > |A
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where A= CA. Thus ¢4, and &, are related to the moments of the
frequency distribution function of C,(¢). For example, when A is a scalar,

L ]

(m”}Efm m"P{w}dw=f_"[ 4

7 G0 | (1.24)

=)

where P{M}E%Re[ﬁd{fm}]=ﬁfm C,(t)exp (—iwt)dr

= D

As n—oo (L.21) leads to an infinite continued fraction, with the time evolu-
tion of C,(¢) determined by the singularities of this fraction in the complex
s-plane.

Many molecular models of fluid dynamics in the literature are ap-
proximants of this expansion. Indeed, for reasons of consistency, it is dif-
ficult to see a model approximating the Liouville equation which does not
fit into the expansion represented by (1.21). Table I shows a selection of
these, where A is the angular momentum J or the dipole orientation u. The
real power of the continued fraction is its general validity for classifying
not only molecular but also hydrodynamical and ferromagnetic phenom-
ena within the same theoretical framework. The generalized hy-
drodynamics developed in the last few years”?*?7 has proved useful in
explaining the observations made by polarized and depolarized light
scattering, and the results of computer simulation. The special brand of
mode-mode coupling'**® used has been slow in influencing molecular the-
ories, but we suggest later in this section how molecular rototranslation
may be described.

Mori in his original paper discusses how, if we truncate the continued
fraction at a particular memory matrix C A.n(8), 1t 15 often possible (Table I)
to introduce one of the following approximations or any of their combina-
tions: (1) long-time approximation, (2) a perturbation procedure, (3) a
high- or low-temperature approximation, and (4) a short-time approxima-
tion.

I.  Long-Time Approximation

Consider a scalar 4 and denote the first spectral moment by Qp={(w).
When A(r)exp (—i€y) is a slowly varying function of time in a certain
time scale Ar, the function € D.(5)=C, (s + i) will be insensitive to s in
a small region around the origin in the complex s-plane (i.e., at low
frequencies). We can then neglect the s-dependence of C 4.($), thus trun-
cating the continued fraction with

CO(s)~t, = fu Cn(0) exp(— iQyt) dt (1.25)
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4 B 4 T FA t23T It may be shown that
B2 9 22437 %.;E%g 5 (5 + Q)=
- E E g g % E. 'a' ‘g ' o Cf‘l(‘5+ lgn}_gﬁ-"'l[‘s}/gn{s} ([‘26)
- =838 g 2 .
5 g % E E £ § 5 S 'g 3 E % y where g/(s) is a jth-degree polynomial defined by
§ i EE':EEE ﬁ.géz'ﬂ ? : :
21 g : %E. T 0 2 E 5382 r -' g()=[s+i(Q—-2,_))] g 1)+, ;4108 (s) =2 (1.27)
] 2 N = a<tc8 . 32 RE%% " i = (0. —
E gEng Eg‘ E‘zﬁnéﬁ g.g Eﬁgé 4 go(s)=1, g(s)=s+i(82,—2,_)+A, _, (1.28)
BEV 2% 35533z iiiige ‘ e
@m2 g a8 W% g B: 2o | - ,
$ ;.*E g E‘ 2 :‘_,_E g E g g E gg o E P&i—I=¢'AJ({])€F=¢AJ(U)/[Itﬂﬂ_ﬂj}-l-}"j]
2 = o : - E . ‘= E ] =
E Eg & é ﬁ _g"g g 22 ,E % E - 5 i3 The singularities of (1.26) are given by the zeros of g, (s). Denoting these
" o : zeros by s, =i(B, — Q) — Y,,a=1,...,n, and taking the inverse Laplace
5 i Eﬁ E S transform of (1.26), we have
e =] oy e
a : o o § n
g =P 3¢ S Cu()= Z R,exp[ (i~ 1a)!] (129)
%_;' E:I = % g a=]
s c I st
3 g g g g Tk 5 where R_ is the residue of the ratio g,_,(s)/g,(s) at the pole s,.
E " m% .§ 2 g f g The approximation in ([.25) corresponds to the description of A(7)
Q ﬁ 5 g & & E"’E > exp(— if,t) in the time scale Ar distinctly larger than the decay time 7, of
= | &5 fé .g = i C,..(1). Mori calls this the nth-order long-time approximation around s=
= = ‘.2. £ 5 .E 'E 3 i§2,. Equation (1.25) is valid if all the n poles are located in the left-half s-
S &= = 3 E . E plane inside a semicircle center s = i€}, and radius 1/7,. These poles repre-
EE E'§ §§ E- sent slow processes, and the higher-frequency components which corre-
%* = é E il % spond to the remaining singularities of C,(r) are represented by the
& e 2 - nth-order random force f (1), whose correlation time is much smaller than
2 £ the relaxation time of the slow processes.
< —'é" Rotational Motions: The Planar Itinerant Librator. Let 4 be the rate at
=% 5 which an angle @ is swept out by a dipole rotating in a plane. It is easily
E E 2 shown that the operators i€, i©,, and i€, vanish identically. Introducing
P -E 5 the third-order long-time approximation around s =0, we have
B e B g 24+ A,5 + 5 5(0)
T gy 8 Ci(s)=———; 27T 42 (1.30)
= § = E 3 g 2+ A5+ [ 95,1(0) + 5, 5(0) | s + 5, (0,
2 g 4 2 5 : 2
:EJ g: % T E z - This expression for C4(s) may be identified with a simple model?® of the
E 3 N A g: 2 angular Brownian motion of a dipole immersed in a bath of interacting
o = = = 3 E E particles. We shall return to the experimental evaluation of this later—it
‘g Eﬁ-" - - a =3 s has been used extensively™® to describe the zero-THz absorptions in fluids
= and glasses. The quantities A,, ¢; ,(0), and ¢; ,(0) may be given solid physi-

cal meanings in terms of the disk /annulus system illustrated in Fig. 4. It is
assumed in the rotational dynamics leading to (1.30) that a librating central
molecule together with its cage of neighbors may be represented by an
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Expernimental « (&) (nepers/em)

0 50 100 150 200 250
v lem™')

Fig. 4. Experimental absorption of HBr/SF liquid mixture at 296°K. (), Fr:nkcl,:’Weg—
dam formalism (see text); ordinate scale unnormalized. (—), (1) truncated Mm:i formalism of
Bliot and Constant, 8,=1; (2) 8;=1.2. Both curves (1) and (2) are unnormalized to the ex-

perimental data on the ordinate scale. [Reproduced by permission from Chem. Phys. Lett., 42,
331 (1976).]

annulus which is free to rotate about a central axis, perpendicular to its
plane. Concentric and coplanar with the annulus is a disk which is free to
rotate about the same central axis. (The words “disk” and “annulus™ are
used only as a convenient scematic description of the model; the theory
will apply to a body of arbitrary shape provided that it is constrained to
rotate in two dimensions.) The disk carries a dipole p lying along one of its
diameters, the orientation of the dipole is specified by an angle #(r) relative
to a fixed direction, and the position of a point on the rim of the annulus is
specified by an angle ¢(r) relative to the same fixed direction. The
mechanical interaction between the central molecule and its neighbors 1s a
restoring torque acting on the dipole, which is proportional to the ang!.llar
displacement #(¢)— () of the dipole in space. Furthermore, if it is stipu-
lated that on the average each cage containing a molecule behaves in the
same way, so that we may study the behavior of a single cage containing a
dipole and examine how the dipole orientation changes when the measur-
ing field is switched off, then the equations of motion are"

I(0)+1, B(1) — Ly*[8()—y(0) ] =1, W,(1)

LA(1) + I, By0(1) + Ly*[ (1) — (1) ] = LW,(1) (1.31)
ﬁ.=£,/f, ﬁ:’:fszz
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Here /, is the moment of inertia of the annulus; /7, that of the disk; £y(1)
and §,6(¢) are the frictional couples acting on the annulus and disk, respec-
tively, arising from the thermal motion of the surroundings; W, and Wl
are Wiener processes representing random couples acting on the annulus
and disk: and y is the natural angular frequency of oscillation when the
annulus 1s held stationary.

In the case 8,=0 (no friction between annulus and disk), the angular
velocity correlation function {é(:}é{ﬂ]) is given by the inverse Laplace
transform of (1.30) with

AN=B,  $5.0)=1"  $:0)= (%)ﬁ_.{ﬂ) (132)

Writing J = /# for the angular momentum of the disk librating and diffus-
ing in its plane, then from (I.17) we have

p [ 2 3
a—f =ﬁ{f)[ a7 W)+ ka;f';} (1.33)

where the probability density function is

2
p(Jt|J(0)) = [EWRTII{I - Cf(f})] - uzexp{ B (J—C,(1)J(0)) }

2KTL(1— CH(1))
(1.34)

and

C,(1)=<J()J(0)) /(KTI,)

B(1)=—C,(1)/ C,(1) (1.35)
with

p(J;07(0))=8(J = J(0))

The probability density functions calculated from (1.33) to (1.35) exhibit
widely different decays for each pair of ¢,(0),¢,(0) values (dropping the
subcript J), and are directly interpretable in terms of the structure and dy-
namics of the molecular fluid they represent. We consider two cases in
order of increasing ratio ¢,(0)/¢,(0); the parameters used to calculate
C,(r) are given in Table II. In each case we adopt the normalization
(2kT/ LI,)=1, and take J(0)=0. In Figs. 5a and 6a the probability densities
are displayed at various times ranging from near the origin to ~2 psec. In
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TABLE Il
Parameters Used to Calculate C,(r) of (1.30)

Fig TCK) B(KT/1)2 ,(0X2KT/1) &,(002kT/L) 107 '22kT/ 1)/

57 296 4.0 1.0 8.0 2.25
6,8 340 2.0 0.78 200.0 1.44

Fig. 5. Schematic of the disk—-annulus representation of (1.30). [Reproduced by permission
from Proc. R. Soc. Lond., 356, 269 (1977).]

Figs. 656 and 7b the decay of the peak height 1s shown as a function of
time. The curve in Fig. 65 decays smoothly; the torque is not subject to
abrupt changes on the average (i.e., the torque dernivative 1s not large com-
pared with the torque itself). The model fluid as a whole 1s not one where
the angular momentum for individual dipoles 1s restricted to favored val-
ues for any significant period of time, since p(J:t|J(0)) broadens out
rapidly to the equilibrium distribution. Collisions take place with a low
mean transfer of momentum.

On the other hand, the probability density function associated with a
ratio ¢,(0)/¢,(0)>1 reveals over 2 psec quite different features (Fig. 7). In
this case the disk i1s very heavy and the torque derivative is large compared
with the torque itself. This means abrupt changes in the root-mean-square
torque which acts on the annulus. The oscillations in p imply that periodi-
cally it becomes increasingly probable to find a mean angular momentum
which corresponds physically to a torsional motion at the bottom of an en-
ergetically favorable potential well. Here a molecule is encaged along a
well-defined axis for relatively long times, since at each successive peak
maximum in p the distribution width is narrow. Hard energetic collisions
are needed to affect the motion of the heavy disk.
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hanr

.

0 1 2

fa) ()

Fig. 6. (a) p(J: 1/ J(0)) for 8,, ¢,(0) and ¢,(0) as in Table 1. p is plotted on the vertical axis,
J on the horizontal axes (from —3/7 to 3/17), and time ¢ on the diagonal axis. (b) Plot of pdf
peak height vs. time (psec). [Reproduced by permission from Mol. Phys., 35, 864 (1978).]

C,;(#) may also be used to calculate p(8(¢);t|6(0),8(0)) which describes
the torsional oscillation of the dipole g in an itinerant librator of (1.30). If
B(r) is the total angle turned through in time ¢, then from (I1.19) and (1.20)

p(0(1);1|6(0),6(0)) = [ ET:T

2 J; "X,(r) dr— x}{r)) ] .

wexp| - (80 =00) = X,()6O))
_ (%h)(z [ X(r)dr~x30)

(1.36)

where

X,(r)= fﬂ 'C,(r)dr
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In practice, however, we wish #(¢) to represent the angular orientation at
time ¢. The probability density function for restricted to the range (—, )
is that of a wrapped normal distribution which may be approximated by
the von Mises distribution:

p(6(1);116(0),6(0))=[ 27lg(a(2))] ' exp[ a(z)cos(8(r) — 8(0) — X;{!}ﬂ'{ﬂ))]
(1.37)

The function () can be found at any specific time ¢ by solving the equa-
tion

I(e(t) _ [ _ kT .
oty = = 7 [ x4 10)]

numerically. Here I,(:) and /,(-) are the modified Bessel functions of
zeroth and first order, respectively. As illustrated in Figs. 6a and 7a, the
functions p(@;|#(0),6(0)) are symmetric about #(0), and eventually die

th

i
031
0317
057
S —olies | I -
Ju 30 J=3N0 ; 0 1 2
{ux} (b}

Fig. 7. Key as in Fig. 6; parameters and pdf's defined in the text and Table II.

Fig. 8. (I) Gy(Q.0); (2) C((@.1): (3) Cy(031); (), the ratio C,(Q,1)/C{*Q,¢) for O =1,
x=04. (a) A=0.1, B, =50; (b)) A=0.1, B,=20; (c) A=0.1, B_=10; (d) A=0.5, B.,=350; (e)
A=0.5, B,=20; (f) A=0.5, B,=5; (g) A=10, B,=50; (k) A= 10, B,=20; (i) A=1.0, B =5.
A is the roughness parameter, x the mass-distribution parameter of Berne and Munlgn:lﬂy.
The parameters above are in reduced units specified by these authors. [Reproduced by per-
mission from Faraday Discuss. Chem. Soc., 66 (1978).]
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down to a flat distribution as r—o0. The similarity in shape to Gaussian
distributions disappears as time increases. The equation of the decay curve

of peak height (Figs. 66 and 7b) is

£

~ exp[a()]
5= 2alya(D))

as opposed to
hy(1)=[2mkTL(1- CX(1))] ™"/

for the angular momentum J. Whereas for angular momentum there is an
onset of oscillation in h,(t), the decay of hy(1) is free of them, except per-
haps for the most rapid torque rate of change. Roughly speaking, this is
because the oscillations are integrated out in forming X,(7). In the under-
damped regime, however, where ¢,(0) <¢(0), both h,(r) and hy(r) will de-
cay in a highly oscillatory fashion.

The probability density function p(8(t); t|#(0), #(0)) is the planar re-
orientational counterpart of the translational van Hove function®'
G.(r; 1|0), where r is center-of-mass displacement. G, may be obtained from
atomic fluids by scattering thermal neutrons incoherently and inelastically.
In molecular fluids, however, translation-rotation coupling is of great prac-
tical and theoretical importance,* and the self-part of the observable van
Hove function is in general the joint probability density function
G, (r,$2;1|0,82(0)). (For planar reorientation £ is replaced by the scalar 8.)
Moreover, tractable expressions for the self van Hove function have been
developed in the first Born approximation, when coupling between rota-
tion and translation is ignored. In the next section we show how this cou-
pling may be included in joint probability density functions.

Rotation-Translation Coupling—Itinerant Libration. In this section we
first deal with the coupled autocorrelation functions of immediate interest
to neutron scattering. Second, within the context of (1.30), we discuss the
influence of molecular center-of-mass translation upon the momentum au-
tocorrelation <J(r)J(0)> and hence on the zero-THz loss profile, related di-
rectly to the Fourier transform of {cosf(t)cos#(0),. The zero-THz power
absorption coefficient is the Fourier transform® of

(S (cos0(0) 5 (cos(@)) >

4 =

when the influence of the internal field is not considered.
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Thejfzirst kind of autocorrelation function is, for general space rototrans-
lation,

Ci(q: 1) =P, (p(1)p(0)) exp[ iq-Ar(1) ] ) (1.38)

where k is_a positive integer, P,(x) the Legendre polynomial of degree k,q
the scattering wave vector, and Ar(1)=r(1) —r(0) the displacement in time /.
The C,(q; 1) in neutron scattering theory are approximated by

Ce(qi 1) = (P (i(1)(1(0)) > (exp [ iq-Ar(r)]) (1.39)

Berne and Montgomery®? have lately shown, however, that the maximum
deviation between C,(q:r) and C,ﬁ”’[q;r} occurs for wave numbers com-
monly found in thermal neutron scattering, and it was pointed out that the
effect of the coupling would increase for structured molecules as opposed
to the rough spheres which they considered analytically. In this work, Berne
and Montgomery adopt the Chandler” binary collision approximation
(Table I)—an earlier approximant of (I.21) than that resulting in (I.30).
When translational effects are ignored, this approximant becomes the
Gordon J-diffusion model for spherical tops.* Furthermore, they adopt (1)
a second-order expansion for the Laplace transform of the free-particle
rotation-translation correlation function, and (2) a partial curtailment to
first order of (1) in obtaining C,(q;s), the Laplace transform of Ci(q; ). If,
har;:ver, we dispense with approximation (2) and keep to second order, we
obtain

S +2B(Q)s+[ BAQ) —k(k+1)— Q7]

Ci(Q;s)= I
O SR+ B+ Bl Kk 7] O
Here Q denotes the dimensionless wave vector and
,{a "k{k+n+{“+}ﬂ“l}91'
(Q)=8, kT )+ 08 (1.41)

where A is a slip coefficient, K a loading parameter, and the dimensionless
angular velocity relaxation rate of the rough sphere fluid. Equation (1.40) is
similar in structure to (1.30). and its inverse Laplace transform may be re-
covered analytically. In Fig. 9 we see that for Q=1, (1) the ratio
C(Q; 1)/ CM(Q; 1) always increases (from unity) with time; (2) for fixed A.
the ratio increases more rapidly the smaller the value of B.; and (3) the
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Fig. 9. Log-log plot (schematic) of loss against angular frequency expected from various
classes of dipolar compounds, as simulated by (1.31). (4) Water free from hydrogen bonding
(in dilute solution); gaslike rototranslation in the liquid state. The Debye and Poley portions
of the loss are indistinguishable. (B), (C) Liguids such as benzonitrile and plastic crystals
such as (CH,),Cl, where the Poley absorption is clearly resolved on the high-frequency side of
the Debye curve. (D) Mesophase, such as the nematic of 4-cyano-4'n-heptyl biphenyl. The
Poley absorption is considerably sharper than in cases (B) and (C) and well separated on the
frequency scale. (E) Glasses, such as those of CH,Cl, in decalin (see text). Here the 8 process
is shown at low frequency together with the high frequency far-infrared adjunct.

ratio is greatest for small A. Thus for given Q the coupling effect 1s small
when B is large and collisions are rough. It is greatest when slipping con-
ditions are invoked in a dilute fluid where the angular velocity relaxes
fairly slowly.

For structured molecules, rather than consider C,(q;7), we discuss an
alternative and simpler means of investigating the interplay between spin
angular velocity and linear velocity. For a diatomic, for example, one may
consider the total velocity autocorrelation function for an atom. If p is the
interatomic displacement vector, then the total velocity v, of an atom is

v,=v+ %m}{p, (1.42)
where v denotes the center-of-mass velocity and w the spin angular velocity

about the center of mass. Thus the autocorrelation function of v, contains
information on both linear and angular velocities. The relation between the
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autocorrelations of v, and v can easily be found if w is constrained to lie in
a fixed direction, as in the planar itinerant librator, so that #( t)=w(t). For
(I.42) we have

Val2)¥,(0) ) = v(1)¥(0) ) + (v(1)*(0)xp(0) ) + 3 (pu(1)*p(0)ex(1)75(0) »

(1.43)
SInce

Co(1)xp(2)v(0) ) = <v(r) «(0)xpu(0)

The central term in the right-hand side of (1.43) describes the effect of
rotation—translation coupling and would vanish in a decoupled approxima-
tion; the third term describes the coupling between reorientation and spin
angular velocity, which vanishes only in the limit /—o0. Although it is
easily shown that

2
(1) p(0)es(1)(0) ) = jT (1) (0)>

this relation hides the dependence of the third term on the joint condi-
tional probability density function p(w(t),8(1): t|w(0), #(0)), which describes
a cylindrical distribution of importance in its own right. We demonstrate
its use by calculating {pu(r)-p(0)e(1)*w(0)> explicitly.

Since p(7)-u(0)= p*cos(#(t)— #(0)), the required correlation function is
defined by

() pu(0)e(t)re(0) >
- f_ ) f_ i} f f w63y €0S(8 — Bo) p(w, 8 t]ws o) p(wg, ) deo des, df b,

—_— e —

(1.44)

where w(0) =w,, #(0)= f,, and p(w,, ;) is the joint density for the initial dis-
tribution of w and # at time 1=0. Since w and # are statistically indepen-
dent variables, and the initial distribution of « may be assumed
Maxwellian, we may write

1/2 2
F{Wn*ﬁu}=(m) exp[ O

0
7 ekT/1) [P

where the initial distribution p(#,) satisfies

f_:P{ 0o) diy=1
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but otherwise need not be specified for the purpose of the present calcula-
tion. Since #(r) is restricted to the range — 7 <# <, the cylindrical distrib-
ution has a marginal distribution for w which is normal, and a marginal
distribution for # which is wrapped normal. It may be specified by gener-
alizing a well-known result in the theory of wrapped distributions.” If x is
a normally distributed random variable with mean (x) and variance o=
((x—{x))*), the corresponding wrapped variate £ = x(mod 2) has a den-

sity

5 1

p(x)= o 142 i {cnsfr:{.r}}cns(nfl+sin{n<x>}5in{nﬂ} EIP(—%qu,f)

n=|

Extending this result to the case of two normal variables, only one of
which is wrapped, we obtain the expression

pw,8; 1w, 8,) = - f_ [exp(fs(w} — 15%2 — isw)

(27)

+2 § {cos(s{w) + n{f ))cos(sw+ nfd)
Nl
+sin(s<w > + n{f »)sin(sw+n#)

x exp{ — 3(s%2 +2nscov+n’e}) | |ds (1.45)

where the covariance term is defined by
cov=_({w—(w))(0—C8)))

In terms of the normalized correlation functions C_(7) and X (1)
-f C (t)dr, we have
0

{wy=C_(t)w,

(0 =0+ X ()uwy
0= 2L (1- i)
2

05 = "‘f—:n (z fﬂ wa{*f}df—‘xml(f})

— kf—:" X (6)(1=C.(1) (1.46)

ROTOTRANSLATIONAL CORRELATION FUNCTIONS 289

Equation (1.44) may be integrated using (1.45) and (1.46) and some stan-
dard integrals to give

kT kT

W0y ONo(e) o(0)) = 24T [ C.(0)- ,—Aﬁf(r)} exp[ -2 [ 'xn,{ﬂdr}
2 2

(1.47)

But from (1.36) it may be shown that
(p(1)p(0))=p f" f_ f Cﬂﬂ{ﬁ‘Eu}.ﬂ{ﬂ;ffﬂuawn)F'[ﬂmWn}ﬂWdﬂndﬁ‘n
3 KT e
=pcexp| —— | X (7)dr !
o| - [ K] (L4)
and hence that

<ﬂ{fi'nfﬂlmtr}-m(ﬂ)>=<n{rl-n{0}>[<m(f)-m(ﬂ)>-(%Xm(:})zJ

(1.49)
Thus the full decoupled approximation to (1.43) reads

Val1)¥2(0)) = <¥()¥(0)) + (1) 1(0)) [ Caal£)(0)) - (%X o r}”

Notice also that analogously with (I.38) and (1.39), for space reorientation
of the diatomic we have

1) p(0)e(1)+0(0) ) # (pu( 1)u(0) > (wo(1)w(0)y  £>0

A more direct study of rotation-translation coupling may be attempted
by considering the correlation matrix for the vector E:'; under the

assumption that the matrices (v(1)w”(0)> and (w(1)v'(0)> are not null
when_ t>0. Within a memory formalism we therefore propose that past
rotations influence future translations and past translations influence fu-
t}lre rotations. Instantaneously at time 1, of course, the statistical correla-
tion between v(¢),w(f), and any of their time derivatives must vanish. As
spawn below, it is a simple matter to generalize the Mori continued-frac-
tion approximant corresponding to planar itinerant libration. with the in-
troduction of only one further phenomenological parameter specifying the
off-diagonal elements of the third memory matrix of [;] [It should be

noted that in planar motion the matrix elements of (v(1)%”(0)> do not all
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vanish, even though the scalar correlation {v(r)*w(0) > does.| It 1s seen that
the new “‘coupling” parameter also appears in the transforms of
v(f)wT(0)» and {w(1)e’(0) ), which emphasizes the inadequacy of a decou-
pled approximation, even when studying autocorrelations.

Since the components of v are mutually statistically uncorrelated, the

elements of the correlation matrix of [:}] are typified by those of the 2x2
matrix

[ Co()v(0))  {u(t)w(0)) |
{o¥(0)) (@*(0)>
(w()v(0)>  {w(1)w(0))
(0*(0)) (W*(0))

c(r)= (1.50)

where v and w are scalar components. Interpreting ([.21) in matrix form,
the Laplace transform of C(¢) is

C(s)=[s+C\()¢,(0)] '
=[5+ {5"'6:(5}'}”2{“}} “I‘#I(U]]“l (1.51)
where :,‘::,{:i}= E,{s]¢l{ﬂ) and r:hz(s}= f‘z{;}%(ﬂ}

are the transforms of the first and second memory matrices, and the ¢,(0)
are defined by

$(O)=ALO<A_ > =12
with

W
0 0
¢ | 2@ ¢ [0 . . }+<u2{n}> =

@(0) e < CP(O))
0)+ ————=w(0
O Gy |
We find that
:r:,fu)=(f; ¢)
where
_ %0 _ <@¥0))
W=y T @)
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and

_<8%0))> _ <5%(0)) _ @%0))  <@*0))
H0)>  (BH0)y 7 @H0))  <wX(0))

¢'.r;!

These terms are identical with the corresponding terms in the (decoupled)
planar itinerant librator model. To attempt a description of rototransla-
tional coupling consider, first, the first-order approximant in (1.51) defined
by

E.(:J¢.{ﬂ)=(:’ :,)

where the A’s may be interpreted as frictional parameters. It follows that

s+A, A, 7!
Ay sHA,

1 {e¥N =N
_ﬂ'{s} _Ar; *¥+hr

6(5} =(

where
A(s)=(s+A)(s+A)—AA,
Writing b=2(A,+A), c=AA —A A, we find

Co(0)e(0))

i

—

(o(0)> exp(— bt)| cos(e—b2)' P+ = msin{c—bz}‘”r] e >b?
il L (c—5%) |_

A
{e(0) > exp(— br)| cosh(b2— )1+ 1’ o= sinh(blrc}‘”:] c<b?
| (b*—c)

(w(n)o(0))
[ 2
=5 {? I":j; exp(— br)sin(c —5%)'*r ¢ >b?
_] (e=b9)
1 »
- ::E(UDIJ;’; exp( — bt)sinh(b*— )"/ b<e
—c)

'-




292 M. EVANS, G. EVANS, AND R. DAVIES

with similar expressions for (w(f)w(0) > and {w(r)v(0) ;. Since {v(f)w(0)) =
{w(t)v(0) >, it follows that -

A (*(0)) =A,(v*(0))

and hence only three of the four parameters A,,A,A,,,A,, are independent. It
can be seen that the translational autocorrelation function {o(1)e(0)) in-
volves not only the translational parameter A, but also the rotational
parameter A linked via the coupling parameter A _; and similarly for the
rotational autocorrelation. When A,_=0, the dependence reduces to one
parameter and the cross-correlation ¢ v(#)w(0)) vanishes identically. More-
over, when A, %0, the cross-correlation (v(0)w(0)> vanishes, as it should.

To obtain the generalized model for planar itinerant libration we simply
define the third memory matrix by

- A
c:‘;.fswmn( ,{ t)

and hence find

l!h.: tlbrl }l'l'r rdrrel
i ;[ a(s}Ja,{sJ T A(s)A(s)
‘IR N ] %
F 3 - 2l r2 il
A(s5)A,(s) 85 I+[S+}"}ﬂ(ﬂ ‘ A(s) |
where
A(s)= a‘+{s+h,};':}] s+(s+A) &*E}]_ h,,i;{@#:}%
and
A, (s5)= [.-.'+ s+(s+A,) ;Er;} } ;’{';} ]
1

s+(s+A) P

"P,-I . h.‘rhrrth'z‘pl |¢'rz¢'r1
A(s) '

x [5 +
A,(s) A*(5)A%(s)

We now have:

hlr¢r2¢r i }‘r: ¢r2¢:l
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and thus all correlation functions involve the seven independent phenome-
nological parameters ¢,;, ¢, ¢,;, ¢,2, A, A,, and A,.. When the coupling
parameter A, =0, the determinants A(s), A,(s), and A,(s) reduce to simple

‘factors, the autocorrelation functions become dependent on only three

parameters (in each case), and the cross-correlations vanish identically.

It is the authors’ belief that all continued-fraction-approximant models
should contain coupling parameters such as A, except of course for cases
where the correlation matrices can be shown to vanish at all times for rea-
sons of symmetry.

_Fm'ther Applications of the Long-time Approximation. Consider the case
in (1.31), where B, is finite. The dynamical system is then described by (1.6)
with

4(0)= *’.’“’}

| w(1)
- BEE[IJ+TI _TI

ud [.52

Y =L B+ (L /1) (1.52)
S |

= ] [ with a null resonance operator |
R

Equation (1.30) becomes

Ci(s)=
- s34+ Bys+(Iyy /1)
fa 452 By+ Ba)+( By Bo+ v(1+(L/ 1)?))s+ v By + By 1o/ 1,)P)

(1.53)

In Fig. 9 we plot some zero-THz dielectric loss profiles obtained from
(L.53) for various friction coefficients 8, and 8, and force constant. The
effect of B, is to broaden the y resonance, and with 8,3 B, it is interesting
to note the loss profile may extend over many decades of frequency. This
might be typical of the situation in glasses, disordered solids, or liquid
crystals, where a cage of nearest-neighboring molecules under collective re-
orientation would do so, if at all, only very slowly compared with the libra-
tion of the inner molecule, taking place at THz frequencies. The version of
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the long-time approximation embodied in (1.50) to (I.53) may then be used
to link together loss peaks separated on the frequency scale by many de-
cades. In these solids therefore, whatever the precise vahdity of (1.53) it is
needless to emphasize that any study of rotational motions of the perma-
nent dipole in the condensed phase should not end at frequencies lower
than those of the far infrared. Conversely, data above 10 cm ~! should not
be analyzed without taking into account the low-frequency loss. In the ex-
treme of charge carrier hopping in semiconductors or chalcogenide
glasses,*® the peak of the loss is often at too low a frequency to measure;
nevertheless, the librational movement of molecular frameworks in be-
tween the occasional hopping of charges will produce a quasiharmonic
Poley type of absorption (a resonance around the frequency y) at THz
frequencies. This is to be expected on the grounds of (I1.53), which is of
course an approximation of the Liouville equation, neglecting all coopera-

tive movements embodied in the resonance operator {, of (1.6).
It is remarkable that to (I.53) may be ascribed another interpretation in

terms of the Brownian motion of two interacting dipoles as in Fig. (1.10).
The following conditions are imposed.

1. The potential between the dipoles has the form

V(0—y)=3 Ly (6—y)’ (1.54)

2. The measuring field is applied in the same plane of rotation of the di-
poles u, and p, which rotate about an axis about the common center
perpendicular to the plane containing p, and p,. B, and 3, are the
opposing friction coefficients arising from the surroundings. This inter-
pretation of (1.53) is restrictive in the sense that it still applies to planar
motions, but by varying the terms in the column vector A and memory
matrix ¢, the model is capable of further improvement. Developments
may be made to account for more realistic potentials than that of
(1.54), and of space reorientation. In the present context y is a measure
of the dipole—dipole coupling strength.

The two physical processes embodied in Figs. 5 and 10 may be dis-
tinguished experimentally by noticing that in the itinerant oscillator we
might expect /, >/, by geometrical considerations, but in the dipole inter-
action model /, = I, for a neat fluid. Further, in a dilute solution of dipolar
molecules in nondipolar solvents, where a theory of autocorrelations is
valid, dipole-dipole coupling is considerably weakened, whereas the THz
resonance remains. It seems unlikely that a theory of dipole—dipole reso-
nance can account for the persistent resonance band. The problem of ki-
nematics vs. electrostatics in the context of (1.54) reduces to one of de-
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Fig. 10. Dipole—dipole interaction as an interpretation of (1.53) (where 8 of Fig. 1.5 is zero)

and (¢; —¢;)=(f —y) in the notation of (1.31). [Reproduced by permission from Mol. Phys.,
(1979), 37, 473)

termining, experimentally, whether /,=1/, is in closer agreement with the
data than /, >1,. This is resolved in Section II.C.

C. Collective Variables

The effect of a finite resonance operator on the theoretical zero-THz loss
profile has removed, like rotation /translation coupling, some of the restric-

tions of the simple Langevin equation. The resonance operator i 4 T8
mains finite in the following instances:

1. The coupling between even and odd variables is finite.

2. When time-reversal symmetry is destroyed by an external pertubation
such as a magnetic field.

The role of the resonance operator i§2, may be described most clearly by
making the separation

% A()=F(t)=F(A(s),t 25 2 to) + Fy(t,1,) (1.55)
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where the Langevin equation is now
2 A1) =i~ BAG)+ (1) (1.56)

Here A(1) denotes a normal coordinate, £ is the angular frequency of a

monochromatic sound wave or spin wave, and f(¢) represents a random
force, which is a stochastic rather than mechanical quantity, as usual. Here

f(#) is a random part of F(r), thus depending on the thermodynamic state
of the system. F, is a functional of 4(s) depending also on the past history
of A(r), and F, represents the terms which depend explicitly on the other
degrees of freedom. Expanding F in terms of A(s),7 =5 21,, the linear term
obtained has a generalized form of the systematic part of the equation

%A(:}=‘£:H{f—5}A[3}ci5+f{r] (1.57)

and the sum of the nonlinear terms of F uniquely defines the quantity f(¢).
The collective description of many-particle systems by much fewer vari-
ables than the number of degrees of freedom is possible if and only if the
fluctuations due to f(r) are neghgible.

Extracting the linear term in (1.55) is equivalent to projecting A(7) into
the subspace of Hilbert space spanned by A4 in (1.6). This may be en-
visaged geometrically as projecting A(7) onto the A-axis. The projection of
a column vector G onto this axis is then PG=(GA" >(AAT > 'A. The op-
eration in (1.55) is then equivalent for a column vector A of splitting /XA
into its projection and vertical components:

A=(AATYAATY '+ (1 - P)A=iQ, +(1- P)A (1.58)

The matrix iQ, therefore has eigenvalues which determine the tempera-
ture-dependent eigenfrequencies of collective oscillations. Very pro-
nounced effects on the power spectrum (e.g., the Rytov splitting of
Rayleigh scattering) are describable in terms of these oscillations. The
effect of an external magnetic field of time-reversal symmetry has been dis-
cussed in detail by Berne and Harp® in this series, so we restrict our dis-

cussion to the main points of interest.

Consider a Hilbert space of dynamical variables whose invariant parts
are set to zero. Denote the inner product of two variables F and G by
(FG). F and G are, for example, linear combinations of the Hermitian

functions of particle coordinates (r;) and momenta (p;), and of spins s;
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which are even or odd with respect to time reversal
(-1 p——p;;s;—>—s))

Cnlle:mivc, or hydrodynamic variables such as mass density or momentum
dens;_ty are such quantities (see Section III.D.1). Denoting the system
Hamiltonian by H, and the external magnetic field by H, we have

Hy(H)— Hy(— H) (1.59)
(F(1)G(0) )y =epe{ F(—1)G(0)) _ (1.60)

Where e, and ¢; are 1 or — 1, according as whether F or G is even or odd.
—H indicates the reversal of the external magnetic field. Now consider a
column vector A of such variables as F and G. In the absence of the mag-
netic field, the linear or odd variables are orthogonal:

(FGYy=0  ifepeg=—1 (L61)

This is not so in the external perturbation, and the coupling between
even and odd variables gives rise to collective oscillations. Denoting the
signatures of A4 |, by ¢, the determinant of (AA”) is invariant under time re-
versal and the cofactor of the (i,/) element changes its sign by g¢. The (i,))
element of the inverse matrix of (4,4 |, is transformed accordingly. There-
fore, the projection operator is invariant under time reversal:

[ PG(1)] e[ PG(—1)]_, (1.62)

Now arrange the set A such that the first m variables are even and the rest
are odd. Denote the even and odd parts by 4, and 4. Then

~Q
ﬂ,.(r)a=[ O "‘ _ﬂg ] (1.63)
@ l-H

[ 4

where (2., is the submatrix of @ consisting of the elements of the first m
rows and columns and £, that of the first m rows and last (n— m) col-
umns. £, and ,, are defined similarly.

Another type of symmetry relation is that between the Fourier transform
components. Denote those of the local densities of physical quantities by

Fy and G,. Since there is no inhomogenous field applied, we have, from the
translational invariance,

(F()G,(0))=0 if kwq
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transport equations in which the primary variable is coupled to a sec-
ondary variable. This is a rapidly varying quantity dependent on inter-
molecular forces. Equation (1.30), for instance, may be derived in this fash-
lon by using three orientational variables interrelated by three coupled
transform equations. The macro—micro correlation theorems discussed by
Kivelson and co-workers'"%47 are useful in that they demonstrate that
collective correlation matrices of the form

This is characteristic of linear phenomena. If one assumes inversion sym-
metry

(F(r)G(0)) =<{F(-71)G(0))
(Fi(1)G(0)) ={F ()G _(0)) (1.64)

In the absence of a magnetic field or similar type of ?:xterpa! applicatic:n,
these symmetry relations are simplified. (A()AT(0)) is split into two dis-

joint submatrices and the projection takes the form J{f}={A{I)AT{U}XA([})AT{{]J}" (1.69)

must have the same general mathematical structure as the corresponding
matrix of autocorrelation functions.

The macro-micro correlation theorems are most useful in those systems
where superimposed correlations due to, for example, dipole—dipole inter-
action are not overwhelmingly important. The theorems assert that the the-
ory of autocorrelations used in the following sections may be utilized when
dealing with spectral band shapes dependent on correlations between
many particles. Multimolecular correlations may always be built up from
autocorrelations—an expression of the domino theory. It is interesting to
note in concluding this section that hydrodynamic interactions between
well-separated solute particles in a fluid medium may persist via a
mechanism of translation /rotation mixing. The rotation of a dipole sets up
a velocity perturbation which imposes a torque on another. Wolynes and
Deutch® have considered a many-particle coupled translation /rotation
model in which the coupled Brownian diffusion of solute particles is de-
scribed using anisotropic potentials in a continuum solvent, the motion of
which is described hydrodynamically. There is a long-range dynamical

PG=(GA,){A.A,> A +{GA,>(A,A,>" 4, (1.65)

The diagonal elements of (1.63) then vanish.

I.  Relation between Multi- and Single-Particle Correlation
Funcrtions

Since the collective oscillations in a fluid are significant spectroscopi-
cally a theorem 1s needed to explain the re]at‘mn between many- and
single-particle correlation functions, (i.e., to provide a macro-micro {:DITIE;-
lation). Assume therefore that the collective elements A(p,q; () of the col-
umn vector A may be defined as sums over monomolecular elements

al p,q.1):

N
A(p.g:t)= 2 o p.q: 1) (1.66)

f=

where N is the number of molecules in the system. For example, the multi-

molecular or macroscopic dipole moment would be defined by

N
M(p.q;1)= 2 pu(p.q:1) (1.67)

=]

and the dielectric tensor by

N
e(p.g:i)= 2 &(p.q:1) (1.68)

i=1
A evolves in time according to (1.6). The continued fraction may then be
employed as an approximate solution. Alternatively, we may use thg lan-
guage of Kivelson and Keyes, where the correlation function of the dielec-

tric tensor is proportional to that of a primary variable wh%ch is slowly
varying, and its time evolution is calculated by means of a pair of coupled

S

orientation correlation between solute particles which again (see Section I)
manifests itself in the appearance of off-diagonal coupled diffusion con-
stants in the N-particle translation /rotation Langevin equation describing
the system. If we follow this paper and consider a collection of N
Brownian solute molecules labeled with position coordinates X,,i=1,..., N,
and orientation coordinated Q,i=1,...,N, then for infinitesimally small
step Brownian motion (delta memories), the configurational probability
density function P([X ;8] =[0]) is locally conserved and therefore satisfies
the Fokker-Planck equation

P/t = — 2 [ V., +L(i)Jg ] (1.70)

i

where J, and Jq, are the probability current densities along the positional
and orientational coordinates of the ith particle. L{i) is the operator uxV_,
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where u. is a unit vector fixed in the molecule. For Emwnian_ pgrtmlefs iz
pmhahiiil}r current densities are linearly related to the deviation o

configurational probability density from its equilibrium value

Ju=— 2 [ D (@)(V,P+BV,U)

X
s

+ D Q) (L, P+ BPLU) | (1.71)
Jai=— 2 [ DI(Q)(VP+ BV, U)
+ DI Q)(L,P+BPLU) ]| (172)

where U(Q) is the potential of mean force of the system. The equilibrium
probability distribution P, (Q) is related to U(Q) according to

Pﬁq(Q}-cnnstexp[ - BU(Q)] (1.73)

The potential of mean force will be affected by any collective ‘t‘]uctua-
tion. The diffusion tensors D (3X3) are functmrfs of the Brownian far-
ticles’ configuration. If it is assumed that the the time scales of momentum

and configuration change may be separated i:} a demff ﬂu:d,f.th:él I:t;hczt ]i
tensors are integrals over the time autocorrelation matrices defin y

tensor product:

DF(Q)= [ O (1.74a)
D;(Q)= [ (v (0)a (1) (1.74b)
D (Q)= j; O (1) dr (1.74c)
DP(Q)= [ " w0k (1) gl (1.74d)

A more acceptable theory for high-frequency spectroscopy wnmd[ 1_;1+
volve memory terms and a Fokker—Planck equation ni.? the form of { AN
However, using delta memories the Langevin equations for rotation—

translation again take the form

My, =— D, [&7v,+ &% | +F(0) (1.75)

Lioy=— 3 [£3%v, +£%w, | + T /(1) (1.76)
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The friction tensors £ originate hydrodynamically as follows. The transla-
tion or rotation of a Brownian particle causes a flow in the surrounding
solvent. The moving solvent then exerts a flow of force and torque on the
other particles. The outcome of this is that the D tensors are directly re-
lated to Oseen’s tensors, which are the Green’s functions for the steady
state, linearized, incompressible-fluid, Navier—Stokes equations. Thus

Djf*=KkT[ (&)™ '8, +(1- 8,) T ] (1.77)
D =kT(1-8;) T;® (1.78)
D =kT(1-6,) T (1.79)
D= kT| (£8%) '8, +(1 —%-)T,;f-'“] (1.80)

Here {; is the Kronecker delta. The “rotation-rotation” Oseen tensor 7%
is simple in form and takes a formally identical interparticle distance de-
pendence as that between the interaction of dipoles. The long-range trans-
lation—rotation and rotation-translation tensors D*® and D™ take a more
involved form.

D. Experimental Methods for Rotational Correlation Functions

In this section we shall describe the technique of Fourier transform spec-
troscopy which we use to obtain power absorption coefficients and refrac-
tive indices in the THz region of the electromagnetic spectrum (2 to
300cm™"). The subject of submillimeter spectroscopy is developing explo-
sively and “definitive™ articles and books'-? are rapidly outdated. Here we
shall summarize our own methods and attempt to put them in perspective.
The tables published by Berne and Harp and by Williams®' are especially
useful in describing the various correlation functions amenable to experi-
mental measurement. The advantage of zero- TH, spectroscopy (far in-
frared and dielectric spectroscopy considered in unison) is that the evolu-
tion of the measurable autocorrelation function (that of the rotational
velocity®®) mirrors in great detail the initial decay of the orientational auto-
correlation functions that are also observed in depolarized Rayleigh
scattering. Experimentally, dielectric spectroscopy in isolation produces an
exponential correlation function that is easily reproducible theoretically by
a great number of models which are seemingly quite different in dynamical
origin. The absurd situation then arises that the classical Debye model of
rotational diffusion (infinitesimally small changes of angular momentum
taking place infinitely fast in an inertialess sphere) produces the same type
of loss curve as a model of 180° hopping from potential wells. Both models
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Fig. 11. Comparison with experiment of the Debye equations at high frequency in two ex-
treme cases where the Poley absorption is pronounced (left column, a solution of CH,CN in
CCly 5% mole fraction), and small (right column, 20% mole fraction (CH,),CCl in hexane at
298°K). The dotted curve is the theoretical absorption according to me‘DebyF mud?l of rota-
tional diffusion. (Reproduced by permission from P. Desplanques, These d’Etat, Lille, 1973,
p. 45.)
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are clearly unacceptable when considered in relation to infrared power ab-
sorption coefficients in liquids (Fig. 11, from a thesis by Desplanques),
since both produce an unrealistic plateau absorption.

The unique advantage of making both loss measurements [those on
¢"(w)] and power absorption measurements on the same sample arises from
the fundamental relations

2V2 we" ()i
(@ +e7 (7)) 2+ e(5)
=2nve"(v)/n(¥) (1.81)

alw)=

Here 7 is the wave number (in cm "), related to the angular frequency (w)
by w=2mwc. €(¥) is the frequency-dependent dielectric permuttivity, and
n(¥») the refractive index. Measurements on e”(v) and €'(7) yield accurately
the long-time behavior of the multiparticle orientational correlation func-
tions of the dipole vector u, and measurements on a(v) and n(#) do the
same for its second derivative at short times. In contrast, measurements of
depolarized Rayleigh scattering yield the equivalent of ¢"(7) /?, so that the
high-frequency wing information is often lost as instrumental noise. Notice
that a(”) is approximately #e”(#), so that high-frequency information is
“enlarged” by the frequency multiplication. To illustrate this, in Fig. 12 we
present the zero-THz absorption profile for CH,Cl, at 298K in terms of
e”(?) and a(7), along with some dynamical models of the autocorrelation
functions. All of these succeed in matching £”(7), but none very well a(v).
Alternatively, in the time domain, the Fourier transform of the Lorentzian
¢"(w)/w gives the multiparticle orientational correlation function (if we set
aside the internal field modification), which for the e"(w) curve of Fig. 13
would be nearly a featureless exponential decay. In contrast, the direct
Fourier transform of a(w) yields — C,_(1), which is oscillatory, as illustrated
in Figs. 14 to 19. Brot has indicated®? that a further advantage of making
a(w) measurements is that the many-particle different versions of internal
field correction turn out to be almost identical numerically and have little
affect on the shape of — C, (/) when normalized at the origin. Despite the
kinematic complications pointed out by van Kanynenburg and Steele,*
~ Cm(2) 18 numerically often identical® to the angular velocity correlation
function. In the absence of memory effects this is a single exponential, so
that Figs. 14 to 19 are clearly indicitive of the need for more realistic ap-
proximants of (I1.6) when A refers to angular velocity,

By consideration of A= [ x ] in the context of (1.6) we have shown that

rototranslation influences a(w) through the relations between v(2)+v(0)>,
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Fig. 12b. Absorption of CH;CN/CCl, (1% solution) in the far infrared. (a) (—), Expen-
mental; (1) J diffusion; (2) Mori theory iterating on y and K (o) for least-mean-squares best
fit. (b) (—), Experimental; (1) the continued fraction representation iterating with K,(1)=
K@) exp(—7/2VK\(0) ); (2) iterating with K(r)= Ky(o)exp[—(/2)V Ky(0) 1. (c) (—),
Experimental; (1), (2), itinerant librator, increasing f8,. (d) (—), Experimental; (—-), itinerant
librator iterating on both 8, and §,. Ordinates: a(#) (nepers/cm); abscissas: # (cm ™).

o (Fl{nepers/em ')

(d)
Fig. 12b. Continued
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*

(&) Log g

la) Logge

5 i rtional to the
1 - lot (schematic) of (1) a(w), (2) €"(w), and (3) € {u};’f.a (propo
:fyllljghl:gmigt;gfii I.f}:nm: data in the far infrared for CH,Cl,/decalin glass.

. The macro-micro correlation
)+(0)>, (v()=w(0)>, and <{w(r)*v(0)). | fion
fhﬁ;[u::nf tﬁn insures that the same effects will be pre:sen;: for the 2:1125(3;)
' ' ’ the advantages of measun
ticle correlation functions. However, s o v
in liqui incoherent neutron scattering is that wi
and a(w) in liquids as opposed to inco | : : ot v
tations of dipole vectors,
the former we measure only resultant orien _ . .
' ' time-of-flight spectrum reflec
totranslation, whereas with the latter t!m
:?1 I:lspecls of the molecular rototranslations, dqe to the large momentum
transfer, and is far too richly informative to be mterpretable.:, —
We s};aﬂ for historical reasons, refer to the broad far-mf'rariﬁ 1 a:;l
rising above the Debye plateau in Fig. 11 as the :-T:}ley ahsnr;:;u;n.tc ]'[:5 S
‘ I resse
liquids this is essentially the zern-—THz_pru ile expre: s
E?l?{i?nepers /cm). Although the total rotational absurptn:'m crnlsls secm:;
er molecule (4,/N) should remain constant th?ugh various cd a:;geslhe
Enaterial state, it is extraneously and intrinsically affected by
' outlined below. | _
mﬂfhla'll:észnlfsewed Ao/ N sometimes differs by an I‘.!'Ilﬂl’lzlﬂl field factor from
that: which is estimated theoretically. The correction is frequency-depen-
dent, but the function a(w) is not distorted to any troublesome degree.
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2. The available sum rules for 4,/ N derived by Gordon™ and by Brot™
take no account of electrodynamic contributions. These may be thought of
mn terms of multipole-mul tipole effects, particularly the dipole—dipole
effects described by Kirkwood. Neither is any account taken of long-range
hydrodynamical effects as described already. The sum rule refers strictly to
autocorrelations of single molecules. Large differences are known between
the experimental and theoretical estimates of the absorption cross-section
for many dipolar liquids. They cannot be attributed solely to collision in-
duced absorptions of tem porary dipole moments (Section D) which
originate in the effect on any given dipole of the combined electrodynamic
fields of all its neighbors at an instant 1. These fluctuate in direction and
magnitude with time but have a finite average value measurable by a
broad submillimeter absorption® consisting of molecules with no perma-
nent dipole moment, such as CC l4. This induced absorption contains in-
formation on the intermolecular potential energy and may be used to study
molecular motions and interactions in nondipolar gases, liquids, and
plastic crystals.

Therefore, we adopt the criterion that to measure the extent of cross-cor-
relations and induced absorption, it is necessary to use in dilute solution a
strongly dipolar species such as CH,Cl,. Figure 20 then shows that a shift
in the wavenumber of maximum absorption (7, ) to low frequencies with
dilution is a marked characteristic of the spectrum. Even at infinite dilu-
tion a large difference remains, however, between 7_, and the root-mean-
Square angular velocity (w,) of the infinitely dilute gas. This is the most
useful feature of the spectrum and the one which theoretical models find
difficult to reproduce. It strongly discriminates against the use of gas-phase
models (M and J diffusion) in the liquid. These, in their simplest form,
produce profiles centered always at wy.

The constancy of (4,/N) with dilution of CH,Cl, in CCl, is evidence
for the fact that the Poley absorption in this case is hardly affected by col-
lision-induced absorption (proportional to a power of N). The extent of the
induced absorption may be measured roughly from the fact that in CCl,,
«(¥) peaks at 1.5 nepers /cm, whereas in CH,(l, it reaches 160 nepers/cm.
In dilute solution, induced absorption will still be present because of the
interaction between CH,Cl, and CCl, molecules. The types of information
available from the zero-THz profile are summarized in Table III.

1. Some Instrumental Details®’

The Michelson Interferometer. A Fourier transform spectrometer
(N.P.L./Grubb-Parsons “cube”) (Fig. 21) is used for submillimeter spec-
troscopy because in such an instrument a simultaneous observation of all
the elements of the spectrum (multiplex record) is kept, which has the
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the need for a realistic description at short times (least-mean-squares fitting). (----- ), (3)
Free-rotor function equivalent to — Cy(f). (@) Rotator phase, 294°K; (b) rotator phase,
273°K, and (-—-—-), 219°K; (¢) liquid at 295°K; (d) liquid at 241°K; (&) mtntﬂr phaﬂ: at
235°K; (f) rotator phase at 192°K. Abscissa: time, ¢ (psec). [Reproduced by permission from
J. Chem. Soc. Faraday Trans. 2, T1, 2051 (1975).]

310

el ET) NO5

] 3,_ H3C~T~CH;
h .L‘-r EH3
,]l,_,'lu

Pet

(h)
. CH4
C
. EI..-" i "‘l:l
1a!
<
e {d)
: CH,
i
'lf CI"[F':‘“*EI
!-D\ CHs
L
Y
_\!
= | :
0.0 0.2 0.4 0.6 08 1.0 1.2
Time, (1) {psec)
i

Fig. 14. Continued

31l




1.0

0.8

0.6 .

0.4

CH;

1
Ci -"'(':"' NO3
CH,

| i | 1 __L_J__,.I__]___L__I_.J

.
e, — —

o)

L fa)

o (c)

X: !
E +_ H,C ..-'-'.-;1-. CH;
i .

Time, ¢ (psec)

()

Fig. 15. Key as in Fig. 14. (a) Liquid at 293°K; (b) liquid at 253°K; (c) rotator phase at
233°K: (d) rotator phase at 209°K; (e) rotator phase at 238°K; (f) liquid at 274°K.
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Fig. 19. (a) to (c) Key as in Fig. 14. (a) Rotator phase (100°K); (b) liquid at 293°K; (c)
nematic phase at 296°K; (d) curve 1—frequency domain curve of a(#) predicted by an early
form of itinerant oscillation at 238°K for the rotator phase of r-butyl chloride. Integration of
this curve up to only 400 cm ™' produces the spurious oscillations of curve 2, which is the cor-
relation function. It is necessary (because of the asymptotic w ~* behavior at high frequences)
to intfgrnt: up to 3000 cm ™" before these disappear. Abscissas: upper, time, ¢ (psec); lower, #
(em™").

advantage of a better signal-to-noise ratio than a conventional grating in-
strument, whereby the spectrum is scanned element by element. A highly
efficient optical system is needed because of the low emission in the far in-
frared of conventional sources such as the mercury discharge lamp.
Although some 1500 laser lines are known in the far infrared, the need for
broad-band spectroscopy ensures the continuing usefulness of the inter-
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feE}melric system that indicated for work in compressed gases, liquids, and
:n ds. The spectrometer c::msisls basically of a Michelson two-beam ilnter-
erometer cnnna_‘:ted, off-line, to a digital computer which selects the com-
E:nt;nt ;rtequencles lfmm the interference record (interferogram) observed
¢ delector as the path difference X bet '
ey eiween the two partial beams of
dif'}”hc: power :variglinn at thf: detector is recorded as a function of the path
! Tmc:c X in _F:g. +22. This is twice the mirror displacement. The beam
vider 1s a thin film of stretched dielectric, usually poly(ethylene
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Fig. 20. (a) Absorption of dichloromethane in t;(il.;;ﬂl;?ﬂ'ﬁ, mnm; ;u;r ;Jnl:?;m
' bottom: pure CH,Cl, (N=9. molecules 3
mﬂg 1;-4.93){[;;' mﬂlﬂclz.ﬂﬂfﬂmj; N=1325%10*" molecules/cm®; N=197x
107! mnlnculu,;'m:". (b) The same in decalin solvent. The stick spectrum represents su:ei-r
J+1 (AK=0) lines for quantized free mmﬂmw“mwuu:;ﬂg;
metric top. [Reproduced by permission from J. Chem. Soc. Faraday Trans. 2, 74,
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TABLE 111
Information Available from Far-Infrared Broad Bands of Rotational and Intermolecular
Origin
Measurement Physical significance
Anfﬂn—%ﬁ.r[i}ﬁhand For a dilute dipolar Bas, may be used to estimate

maxs the maximum power absorp-
tion frequency

a(?), the zero-THz power absorp-
tion coefficients

the dipole moment g, given an accurate sum rule.
For a compressed nondipolar gas, may be used to
estimate its first multipole moment subject to theo-
retical constraints (e.g., bimolecular collisions) and
molecular symmetry. In nondipolar liquids and
plastic crystals, 4,/N may be compared with its
equivalent in the compressed gas and an estimate
made of the cancellation of dipole inductions due 1o
intermolecular potential symmetry. The constancy
or otherwise of A4,/N with dilution of a dipolar
solute in a nondipolar solvent is a useful method of
investigating molecular association and complex
formation and of probing liquid crystalline environ-
ments.

As a dilute dipolar gas is compressed, 7.,  shifts
gradually to higher frequency as the overall a(#)
contour broadens (Fig. 1). At liquid densities P max
1s removed a long way from its value in the gas
phase (by as much as 100cm™"). It is therefore
strongly dependent on intermolecular potential en-
ergy. Successive approximants of the Mori con-
tinued fraction may be used to model ey and the
contour a(#). Equation (1.30) is such that the
mean-square torque is well defined and measurable
from #,,,. Higher approximants would relate Ve
to this and its derivatives.

This is a probability distribution of wavenumber
(ie, a spectral function). Its Fourier transform is
thus a correlation function, relating random re-
orientations of dipoles taken in a temporal
sequence. The correlation function obtained by
Fourier transformation of alw) is

~ CalD=Gi0) 3 jife)

i
where p is the permanent molecular dipole moment.
In its ability to yield -af‘m(f} directly, accurately,
and in detail, the zero-THz a(¥) profile is uniquely
placed as a probe into the short-time details of

molecular dynamics. Any model of the fluid state
must match up with C(y) satisfactonly as well re-

produce C_(f)={p (0)- E_pﬁr]}. measurable from
the dielectric loss. vy
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Fig. 21. Schematic of the Grubb-Parsons/N.P.L. interferometer.

terephthalate). Internal reflections in this beam divider determine the
transmissivity of the interferometer and cause it to be strongly frequency-
dependent, so that different beam dividers are needed for different
frequency regions.

Submilliteter detector technology is rapidly advancing, but the Golay
pneumatic cell is conveniently operable at ambient temperatures. The
faster and more sensitive Rollin detector is helium-cooled and extends the
spectral range to overlap with the microwave klystron frequencies. Two
types of interferogram are usually used (Fig. 23), resulting from amplitude
and phase modulation of the detected signal. Phase modulation dis-
criminates in favor of the interferogram range, resulting in a higher signal-
to-noise ratio in the detected signal. The modulation is achieved by
aperiodic displacement of one of the mirrors through a distance of the
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Fig. 22. Michelson interferometer (top) and interferogram (bottom): B, melinex beam di-
vider; L, planoconvex TPX lens; D, detector; M,, moving (step) mirror; M,, fixed mirror; R,
sample in asymmetric mode (for measurement of power absorption and refractive index); a
sample in absorption mode.

order of a mean wavelength. This then provides an antisymmetrical inter-
ference record (Fig. 23). At far-infrared frequencies the magnitude of the
oscillations and tolerances in the quality of the motion are such that a rela-
tively simple vibrator may be used to sinusoidally drive the mirror on a
loudspeaker coil. This development by Chamberlain®’ removes the follow-
ing disadvantages of amplitude modulation of the detected signal.
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I. The beam dividers cause the interferometer to have a transmissivity
that is strongly frequency-dependent. In the polarizing interferometer,
devised by Martin and Pupplett*® and discussed later, the transmissjy-
ity is constant up to a cutoff frequency which is inversely proportional
to the grid spacings of the polarizers and beam divider through which
the incident and emergent beam passes. Features of the transmissivity
are improved by phase modulation in both types of interferometer.

2. Considering the grand maximum [point I(0) in Fig. 22] of a typical
amplitude-modulated interferogram, the maximum of the interference
fluctuations is a little more than half the total signal, but the detector is
required to record all of the signal. Phase modulation allows the detec-
tor to record only that part which is varying with path difference and
eliminates the background. Thus lower amplification gains are re-
quired, electronic noise is reduced, and source noise is removed. Stray
rays emitted by the interferometer are discarded.

3. A rotating chopper, as used in amplitude modulation, cuts off half the
available radiation. In the Martin-Pupplett instrument the signal is
modulated by rotating the beam divider, and this square-function

modulation gives a superior spectrum to both the sinusoidal amplitude
modulation and sinusoidal phase modulation.

Computation of the Spectrum from the Interferogram. If the interferom-
eter is irradiated with monochromatic radiation of luminance By(vy) at a
wavenumber 7, and if the reflectivity and transmission of the beam di-
vider are 50% the energy detected will be By(s,)/2. However, whatever the
reflectivity of the beam divider, the average intensity in the two beams is
always equal, since each beam undergoes one reflection and one transmis-
sion before reaching the detector. It follows in general that

Io(x) =3 By(5,) + 3 Bo(7,) cos(2airx) (1.82)

where x is the path difference between the beams and equals twice the dis-
tance traveled by the movable mirror. Cosine fringes are therefore ob-
served. For a polychromatic source of luminous density B( V),

I(x)=} [ " B(5)di+ ! [ " B(#) cos(2nix) d (1.83)
0 0
We define the interferograms as
F(x)=1 [~ B(3)cos2mix s (1.84)
0

and note in passing that I(x)— F(x) is eliminated with phase modulation.
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F(0) is the amplituded-modulated grand maximum where all frequa:ncies
interfere constructively. The detected spectral power B(#) and the inter-
ferogram are a Fourier transform pair whence

B(7)= f_mmcns Yubxdi (1.85)

igi ' 1 d numerically. Equations (1.84)
By digitally recording F(x), B(¥) 1s ca]cuiater .
a:d (fﬂi} apply to the ideal case when the interferogram is prerfe::tly sym-
metrical about x=0 [i.e., F(tx) is an even function of x]. With imperfect

alignment the following equations are used:

F{x)==fm B(7) exp(2mivx) dv

= a0

B(7)= f_: F(x) exp( — 2mivx) dx (1.86)

Assuming that F(x) is real implies that B(7) is Hen:njtian; that 1s, i.f B{?T
p(#)—ig(¥), then p is an even function of » and ¢ 1s an odd function of ».

Phase modulation implies that

I(x)= f:.e(a}ﬁ+ I ZB{F)cus[Zﬂﬁx-ﬂﬁ)}dﬁ (1.87)

where &(7) is the phase difference due to any residual asymmeir?r. On piil:
ing an isotropic specimen in front of the detector, the expression for the

center power becomes
Io(x)=1Iy+ Fy(x)

where fn=f_m By(v)dv
Fo(x)= [ * By(7)cos[ 2mix — ()] d (1.88)
and B,(7)=7(¥)B(7)

Here 7(#) is the transmissivity of the specimen. Fourier-transforming (I.88)

yields
S(v)=By(7) exp[ — i(7)]

= [ Fy(x)exp(—2nivx) dx (1.89)

from which the transmission spectrum 7(#) may be recovered for the sam-

ple.
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Truncation and Sampling of the Interferogram. For the purposes of
numerical Fourier transformation, we must truncate the limits of the in-
tegrals in (I.83) to (1.89) and must also record the interferogram digitally,
using a stepping motor to drive the mirror. The integration limits cannot
be infinite when the independent variable is path difference derived from
the displacement of the mirror. If the maximum path difference is X, the
spectral resolution is then determined by Ar=1/X. If we truncate the in-
tegral in the range — X to X, the interferogram function F(x) is effectively
multiplied by a rectangle function m(x/2X), where

m(x/2X)=1 |x|<X
=0 |x[>X (1.90)

The transform of F(x)m(x/2X) is the convolutuion

g(7)*2X sin(2mx7) / (2mxi) (1.91)

which results in a physically meaningless negative region in the final
spectrum. To overcome this problem a weighted rectangular function is
used which causes a loss of resolution. This is m(x/2X)W(x), where W(x)
=cos’(mx /2X).

If a finite number (2N) of ordinates of the interferogram are sampled,
the sampling theorem of information theory shows that the spectrum will
be meaningfully divisible into ¥ frequency elements. The maximum spac-
ing (Ax) at which the ordinates of the interferogram need to be measured
is then given by

Ax=1/(2]7,— 7)) (1.92)

a relation which also defines the cutoff frequency of the instrument, past
which the spectrum will be distorted by folding (periodicity in the Fourier
series used to calculate the Fourier transform).

Synchronous Detection. The real interferogram F(x) is aperiodically
scanned at a constant speed and recorded using phase modulation
followed by synchronous amplification in which the periodic detector out-
put is amplified, filtered, and mixed with a reference signal derived from
the modulation process. This leads to a dc output that is directly related to
the peak-to-peak detector output. The process is outlined below. A sche-
matic representation of the electronics is displayed in Fig. 21.

STEP 1

Suppose that the radiation of power J(») is modulated at a frequency f
to give at any instant 7 a signal J(y.ft) which can be expressed as a Fourier
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series:

oo

Jr ) =1K°(y)+ 2 [ KD(y)cos2alft+ Z)(y)sin2nift | (1.93)
jom ]

’ icients. In the case of phase
where K(y) and Z“)(y) are the Fourier coefficients _
modulation we take the time origin so that J(y,ft) i1s odd with respect to ¢.
The detected signal is then given by

J(y ft)= fgl Z"( y)sin2xlft (1.94)

STEP 2 . N
The output from the detector is w/(y,.fr), where u is the responsivity

(signal delivered per unit power input).

STEP 3 _ _ .
The detector signal is amplified with a gain of g.

STEP 4 |
It is passed through a filter tuned to the frequency f to give

D(y.ft)=guZ"(y)sin2nft (1.95)

STEP 5 - | |
In a synchronous recording this is multiplied and phase-linked with a

reference signal, also of frequency f. This results in a slowly varying re-
corded signal:

V(y)=(2/m)guz(y) (1.96)

and a series of time-dependent terms of frequency multiples of f.

STEP 6 | |
A series of low-pass filters removes the time-dependent terms to give

V(y) as the output signal. Z,(y) is the ::u-eff_ic:itnt of the fflndamental tf;:
in the series expansion of J(y.ff). In amplitude modulation the recor
signal is proportional to the total power J(y) that ﬂﬂuld Itﬂa‘l:h the detector
in the absence of modulation. With phase modulation this is not so,

The path difference at any instant ¢ is not y but y +j( fr), where _; is the
jitter amplitude function. The corresponding power at the detector is then

J(ySt1)=J+ G(y,ft) (1.97)
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where  G(y)= [ ZBD(F}WS[Zwﬁy—¢[F}+2ij{ fr)] dv

Expanding the cosine, we obtain

cos(2m5/( f1)) = 2u%(p7) + 3 u( i) cos 2mif
f= ]

sin(2wej( fr)) = § at( pv)sin 2xlft (1.98)
f=

where p is the jitter amplitude, Comparison with (1.93) yields

Z(»)=~ [ a"pi) By(5)sin[2miy (7)) 7

=Go(y) (1.99)

The recorded signal V(y)=(2/m)guz ') ¥) now contains no y-independent
terms and is the phase-modulated interferogram. The effect of phase mod-

ulation is to modify the transmitted power spectrum by the wave-number-
dependent factor

[V p7)|
For sinusoidal modulation,
J(fY)=psin2xfi (1.100)
and o'V pir) =2, (2mip) (1.101)

where J, is the first-order Bessel function of the first kind. Limitations in
the final spectrum due to variations in this factor can be minimized by
matching a'(p¥) with the transmission characteristic of the interferometer,
governed largely by beam-divider effects. Square function modulation
produces a spectrum superior to sinusoidal modulation. Such a square

function is possible with a rotating chopper as used in a polarizing inter-
ferometer.

The Polarizing Interferometer.® 7o measure absorptions in the very far
infrared range 2 to 40cm™', we have access to the apparatus designed
originally by Martin and Pupplett. This uses a wire-mesh beam divider and
similar meshes as polarizer and analyzer. Figure 24 is a schematic. The
polarizer (P,) is a circular grid with reflection and transmission coefficients
close to 100% from frequencies approaching zero up to 1/(2d)em—". It is
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Fig. 24. Schematic of a polarizing interferometer. [Reproduced by permission from J. Chem.
Soc. Faraday Trans. 2, 74, 59 (1978).]

spun about its center point acting as a polarizing ch_npper hl:flde and _p:lr
ducing square function modulation. A second polarizer (P,) is held fixed.
The beam divider windings are at 45° to those of P,. Roof-top reflectors

replace the Michelson plane mirrors. N
EPA collimated beam is plane-polarized at P, and then divided by the flat

' ' i ith its E-vector at 90° to
ire-grid polarizer D into a beam A, polanized with its L .
Eesinnn? beam B. Then A and B are recombined at the wire grid D and

i 1Z] 1 P,, which has its axis parallel
finally pass through the polarizing analyzer F,, 1ts
to or at 90° to P. The reflectors M, and M, act as polarization rotators.

For a monochromatic source, the beam is E“ipﬁf:a].l}f pﬂlar:iz:q after re-
combination at D with an ellipticity varying periodically with mclrea.sEg
path difference between beams A and B. For the E-vector leaving the

beam divider,

a
E,= ?""_—nms(grmhh Etms{mrmn) (1.102)

where n is the unit vector normal to the plan_e of the paper (.Fig. 24), ﬂ.ﬂi {
that in the plane and transverse to the direction of propagation. A, andr 5
are phase shifts for beams A and B. For the E-vector leaving the polarizer

P
|Eg|=Eqp=(a/2)| cos(w+ A,) +cos(wt +Ap) |
= g cos(wt + A) cos(A/2) (1.103)
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where A is the mean of A, and A, and
A=A, —Ay=27/N)x (1.104)

where x is the path difference in the interferometer. Here P 1s a unit vector
in the direction of the optical axes of P, and of P,. After leaving P,, the
beam is plane-polarized with an amplitude that varies periodically with
path difference in the same way as in a Michelson interferometer. From
(1.103) the emergent intensity is given by

2 2
| By wl® o E),"_
1 =<|E2[> 2:05(2 - (1+cosA) (1.105)

Alternatively, if the axis of P, were rotated by n/2:

|Eo|=E;p'  where pp'=0

2
and hence I = I%(I —cos i) (1.106)

The transmissivity of the instrument is constant up to a cutoff frequency
which is inversely proportional to the grid spacing. The resolution is not

limited by departures from the flatness of the grid or by any phase retarda-
tion in the polarizing grid.

2. Significance of the Experimental Results*®

Spectra are always of the absorption type, so that the sample whose ab-
sorption coefficient is to be measured is placed between the interferometer
and the detector. By comparing sample thicknesses d, and d, we obtain

a(v)=(d,—d,)” 'log,(1,(7)/I(¥)) (1.107)

where /o(7) is the background power spectrum and /() 1s that for an in-
crease in sample thickness (d,—d,). In this section we discuss briefly the
sources of uncertainty in a(?) arising from the experimental setup. The
quality and reproducibility of the Spectra are optimum when the product
(d;—d))ay,, lies between 0.5 and 1.5, which amounts to an overall absorp-
tion by the specimen of about 60 to 85% of the incident radiation. Under
these conditions phase-modulated spectra (e.g., those of Fig. 20) are
repeatable to within 2% and reproducible between different laboratories.

Figure 25 shows the far-infrared absorptions of chloroform under ampli-
tude- and phase-modulation conditions.




334 M. EVANS, G. EVANS, AND R. DAVIES

20 ) —

o

& (P)inepers em ')
=

|
[

50 100 150 200

piem ')

Fig. 25. Far infrared spectrum of liquid chloroform. O, Phase modulation: +, amplitude
modulation; A, klystron (112 GHz); @, microwave measurements. Ordinate: a(7)
(nepers/cm)'; abscissa: # (cm ™).

The systematic uncertainties that arise from a particular instrument and
set of conditions are typically small (Fig. 25). As Fig. 12 shows, however,
+ 2% uncertainty is small enough to be insignificant when making com-
parisons with the theoretical models available. The data in Fig. 26 were
taken with different window materials and different detectors (Golay and
Rollin types). Further good agreement is usually obtainable, with skill, be-
tween different types of beam splitter in the Michelson interferometer.

A source of systematic uncertainty in the “cube” design is the highly
convergent beam through the sample, effective collimation being difficult
to reconcile with the all-important need for maintaining maximum flux
throughput via sometimes highly absorbing pressure windows. These con-
vergence effects have been discussed by Fleming® but are small when the
difference (d,— d,) is small, which is always the case for intense absorbers
such as dipolar liquids. With longer sample paths the data may be checked
against those obtained with accurately collimated laser radiation. When (d,
—d,) is of the order of the wavelength of the incoming radiation, spurious
peaks sometimes arise as a sine wave superimposed on the computed
spectrum due to multiple internal reflections occurring within the sample
cell. These have been recognized in the work of Baise''* on compressed ni-
trous oxide. Experience has shown that the cell window material is im-
portant in determining the extent of this effect. Z-cut crystalline quartz
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Fig. 26. (a) Agreement between various experimental sources for liquid bromobenzene. @
Microwave (klystron) spot frequencies; O, polarizing interferometer; & Grul:;-h:
Parsons /N.P.L. “cube” interferometer. (1), (2), (3) Various theoretical models {E;l.‘- original
reference). (b) — Calculated loss curve for liquid bromobenzene using Langevin’s equations
for an asymmetric and a symmetric top molecule, The theoretical curve from Mori three-vari-

able theory is also coincident. ® Experimental loss data. [Reproduced b -t
J. Chem. Soc. Faraday Trans. 2, 73, 1074 (1977).) PRGN S
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Fig. 27. (a) Far infrared spectrum of benzonitrile liquid at 296°K. (_hdinatc: a(¥) neper
cm™'; abscissa: # (cm™"). The low-frequency peak is the Poley absorption, t]_:: r:uther an in-
tramolecular proper mode. The dotted line is the Debye plateau and the ;nuhd_ lines ﬂlil} the
Langevin equation as applied to a spherical top with the mean moment of inertia u; ﬁ:::
asymmetric top (2). It is clear that neither version produces the Poley absorption *n}rtrum
to the low-frequency (microwave) loss. (b) ® Experimental loss data for benzonitrile. (—),

Theoretical, as for Fig. 26b.
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windows, when optically parallel, enhance the effect, which is eliminated
by wedging very slightly. There is usually less of an effect with polymeric
window material, so that these are used wherever practicable. These effects
may be recognized from the relation |

1
Ar=

which defines the frequency spacing of the spurious peaks in terms of the
sample refractive index n.

One further cause of experimental uncertainty arises from the intense
higher-frequency proper modes of absorption as illustrated in Fig. 27.
These are intramolecular in origin (vibrational, difference modes, etc.), but
their intensity with respect to the Poley absorption is sometimes enough to
block off almost the whole of the flux throughput. The interpretative diffi-
culty is one of extrapolation and resolution of the Poley band from the
proper mode. For the purposes of theoretical analysis we chose our spectra
carefully to avoid these complications.

Sample-Cell Technology. The design of sample cells is beyond the scope
of this chapter, but it has an essential bearing on the quality of the final
spectra because of the need to maximize flux throughput. The reader is re-
ferred to original articles for examples of designs for use with dilute and
compressed gases, nondipolar liquids, dipolar liquids, mesophases, and
solids. Specialized designs are available™ for studies of liquid water, an
enormously intense absorber in the far infrared,' and for ultra-accurate
standards measurements. One concern common to all designs is the prefer-
ability of evacuating the whole system (interferometer, sample cell, and de-
tector) to eliminate water vapor, which absorbs strongly in the far infrared.
For the same reason special care ought to be taken to eliminate moisture
from the samples being investigated.

II. EVALUATION OF MODELS OF FLUID-STATE
MOLECULAR DYNAMICS*

In Section I we have been concerned with rationalizing the growth of
modeling techniques for the fluid-state molecular dynamics in terms of a
continued-fraction expansion of the Liouville equation, for which all such
models are approximate solutions. In this we compare the theoretical and
experimental data for selected dipolar systems, ranging from the mod-
erately compressed gas (Section [1.B.2), through to the glassy condition
where the zero-THz profile is a continuum loss peaking at frequencies

*In this section note that K.(t)=¢,., (1) for the memory functions.




338 M. EVANS, G. EVANS, AND R. DAVIES

sometimes separated by many decades on the log scale (Section IL.F). Fea-
tures of this progression have been illustrated in terms of one particular
model, the itinerant oscillator /librator, in Fig. 9. In Section III, a further
dimension is added by the use of machine simulations of a structured (di-
atomic) molecule based on the algorithm developed recently by Tildesley

and Streett."'
At the outset, in Section II.A some fundamental points are discussed

which remain at issue and will probably be best tackled not by the inven-
tion of more models but by the use of molecular dynamics and Monte
Carlo simulations.®! The most intractable problems—that of the internal
field and the related one of electrodynamic coupling (dipole-dipole being
the longest in range)—have already been introduced. However, we have
taken the line that these should not distract us from our major tasks of re-
lating, whenever possible, theories of statistical autocorrelations of dipole
vectors to zero-THz absorption profiles. We have also defined the liquid
state as that where rotation—translation coupling is the most pronounced
characteristic. This is, however, with the hindsight of only a few months,
when the results of Section I.B first suggested themselves to us. Before that
no clear-cut mathematical formulation of the effect of linear velocity on
{e(1)*(0)> has been included in the purely rotational models of Table I.
The new theory of translation-rotation coupling being yet in its infancy,
we proceed on the understanding that the use of purely reorientational for-
malism for the liquid-phase molecular dynamics is a widespread approxi-
mation, similar to the use of (1.39) in neutron scattering. In stating this we
might be doing an injustice to Wolynes and Deutch and to others who may
have considered such effects from a hydrodynamic point of view.

A. The Dipolar Autocorrelation Function and Dielectric Loss—
The Fluctuation /Dissipation Theorem®

The mean observed value of A,(r) in (1.2) is given by

(A(1)) = fr A(p.9)"f,(p.q.1)dpdg (IL1)

where I denotes the phase space (of p and g) and 'f, is the first-order
space distribution function akin to the probability density functions of Sec-
tion I.A. In (II.1) and the following, we drop the subscript j for con-
venience. For an isolated system,

d" 9’ .
s o= 21 gy, (11.2)
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By considering the change H’ brought about i i o1 ;
: t in the equilibrium H
mian f,; by an external perturbation E(r), we have pailios

H'=—X(p,.q,)E(1) (I1.3)

where X is a property of the system (canonical ensemble of r molecules)
deemed responsible for the increase in the Hamiltonian. If E(7) is an elec-

tric force f_ielr.f, then X will have the units of the electric dipole moment
The new distribution function is now .

J=lo+f(1) (1L4)
where f='f, and

of Vo
TR ¥ Mt U/ St VA i (IL5)

ip the same notation. The term L'f” is the product of
tu:m_at Increments, and since the perturbation is weak i
gligible. Equation (I1.5) thus becomes

3f" ,
or = NS+ E(D)Ryf, (IL6)

operator and func-
s considered as ne-

where the operator 2, is defined by

® 00 o (1L.7)

r

dym S [ dX 4 dX 9
Integrating (11.6) yields
. !
f{r}zf_mexp{—ﬁ.!{,{r—:’}}E{r’)ﬁxfﬂdr‘ (I1.8)

If 1t is assumed now that the s
ystem can be observed by a study of th
property Y (related to X), then from (IL.1) and (I1.8) for ¥ we mzy writ:

(Y(1)y=¥, + L 'mg{r}dr fr Y(£)exp(—(1—1)8,)  (IL9)
XLy folt') dpdg
=Y, + f_’mgfs)qr”u,r)dr (11.10)



340 M. EVANS, G. EVANS, AND R. DAVIES

In (I1.10) we may deduce that

Vo (1,t)= jl‘ Y(t—1)2,fo(0) dp dg (IL11)

from the fact that &, f, is stationary in time, since the operator is taken at
equilibrium. Similarly, Y is stationary, since it depends only on coordinates
and momenta. ¥, depends only on the change §t=r—1" and is the re-
sponse of Y to a unit impulse of E. It is thereby known as the response
function, or, because of the change 8¢, as the after-effect function. Equa-
tions (I1.1) to (I1.11) limit the relation of molecular statistical mechanics to
macroscopic zero-THz bandshapes to the regions of linear response where
the probe force field E(7) is small. We shall not stray outside this region in
this section. In the canonical ensemble

foccexp(— Hy/kT)
so that
Qufo=foX /KT (IL12)

Denoting means over p, ¢, and ¢ by ¢ - 3, (II.11) becomes

¥y (0)= 7= CX(O) V()

| .
= = (X(O) ¥ (1))
w
=-HE<XW}Y“}> (IL.13)
Therefore,
Y1)y =Y, — é "B (— 1) (IL14)

where (1)=(X(0)¥(s)> is a multiparticle correlation function. Equation
(I1.14) allows calculation of the forced response of the system from the cor-
relation functions of the spontaneous fluctuations at equilibrium of the
properties X and Y. It is of general validity for linear response, where
without loss of generality E(r) may be represented by a single sinusoidal
component:

E(r)= EyRe[exp(iwt) ]
Y(1) =Re[ exp(iwr) ]
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Taking Y., =0, we have then the fluctuation—dissipation theorem in the
form

(YD) =E, Re[ﬂxp{ ) j; " exp( — iwotg) ¥ yy (1) d;ﬂ] (IL15)

I.  Application to Dielectric Susceptibility

The complex dielectric susceptibility (X*(w)) is related to the complex
permittivity (e*(w)) by

oy w)=1 __ <m (1))
)= 4 VE,exp(iwt)

(11.16)

where (m_(¢)) is the resultant dipole moment in the direction (z) of the

probe field E. V is the volume of the system and <{m,(1)>/V is the polari-
zation.

From (II.15),
X*(w) = fﬂ “exp(— iwt)¥, (1) dt (1L17)

where

1 :
¥,(1)= — = (M0} M,(1))
Since in an isotropic fluid
M, (0):M, (1) = 3¢M(0)-M(1))
we have finally

e*(w)—1 4o o

m ~ ST : exp{—im}:ﬁ{r}dr (11.18)

where we have used the internal field relation

e*(w)+2

E3(0)/ E*(w) = =5

to relate the external applied field E, to the field E which figures in the
Maxwell equations for the system (regarded as a macroscopic sphere in
vacuo). Equation (11.18) is generally valid in this case, whatever the origin
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of the resultant dipole moment M (atomic polarization, ionic, orienta-
tional, etc.), Y(1) reduces to an autocorrelation only:

1. For a fluid where the molecular fluctuations are uncorrelated. _
2. Where the molecules are only slightly polarizable so that e*(w)—1 1s

small.
3. Where deformation polarization is negligible.

Under these conditions:

C(1) =<M(0)M(2))> = 2 (e, (0)p (1))

= N2p(O)p()) (IL19)
where u=p /|p|. Thus
47Ny = .
e(w)—1= ;;:h_;f;, [ I —-wf C,(1)sinwidt
0
4w Np* =
e"(w)= C (1) coswt dr (11.20)
@@= [ o)

where C,(1) is the dipole autocorrelation function (u(#)-u(0),. In (11.20),
drp® /3kTV = (¢y—1)=4mx,

In a pure, strongly dipolar liquid such as CH,Cl,, (I1.19) and (I1.20) are
still approximately valid, but dilution has an appreciable effect on the posi-
tion of #_,, (Fig. 20). The micro-macro correlation theorem implies that
the decay of (M(7)*M(0)> /<{M(0)-M(0) ) should still be identical with but
faster or slower than that of <u(¢)*u(0))/<u(0)-u(0),. However, the rela-
tions among €”(w), €(w), and C,(¢) are altered from those of (11.20). The
physical origin is that each molecular dipole polarizes its neighbors, which
in turn react upon it as discussed in Section I. Scaife® has explained why
the solution to this problem can only be approximate, but Kivelson and
Madden'” have developed formal relationships and provided a systematic
framework, based on the Mori continued fraction, for introducing succes-
sive approximants relating C,(1) to Cy(1). The ratio of relaxation times of

Cy(?) and C(¢) 1s, in this theory,

™ _ 1+Nf
u |+Nf

(11.21)

T

ROTOTRANSLATIONAL CORRELATION FUNCTIONS 343

Here 1+ Nfis a factor akin to Kirkwood correlation g which measures the
correlation between neighboring dipoles, and f is a dynamic orientation
time correlation function for the factor [d(cos C(1))/d!] of two different
dipoles. The difficulty is that f is determined formally only in terms of a
projected Liouville operator. Furthermore, the factor [1+ Nf] is sample-
shape-dependent and must always be identified with a particular geometry
(e.g., the sphere in vacuo used above). Perhaps the treatment of the internal
field most in the spirit of this review is that of Sullivan and Deutch,*® who
have introduced the projection operator: PG=M+(MM> (MG inde-
pendent of geometrical factors. Formally, then,

Cw@-1_g
01 ~ (= G(0)

=[1+iwr,(w)] ™" (11.22)

where
7, (w)ex fmexp( — iwt)k(1)dt
0

k(1) =1~ g (1) exp[i(1— P)e] M )

While k(¢) 1s a multiparticle correlation function, it is a local ‘quantity that
does not depend on sample and surroundings. The projector P removes the
correlation over long ranges ansing from dipole—dipole coupling or hy-
drodynamically.

Nevertheless, the formal nature of (11.22) remains, although a number of
approximations can be incorporated within its framework (rather like
Table I). We do not propose to review these numerous equations here, but
proceed strategically on the basis that for moderately dipolar fluids the
problem in numerical terms is considerably deflated, as demonstrated by
Brot*? and by, Greffe, Goulon, Brondeau, and Rivail® Brot has consid-
ered the internal-field problem in a group of intercorrelated molecules
constrained in a cavity just large enough for correlations to be negligible
outside. Using the Lorentz field, he obtains

27kT = a(¥)n(v T
cn=-2 zf u{#}n{r)t&&?wrﬂ}dﬁ (11.23)
47N Ez([s'{ﬁj+l] +r.”{f-')2]
and with the Onsager field,
27kT(2eg+€,.))’ 1> aF)n(7 ;
cui)= (2¢5+€,.) J‘ -:(r}n(r}ms{lﬂpﬂ)dﬁ (11.24)

4rNK e +2)" Y0 [ () +2¢, ]+ € (7))
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