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A single, simple equation is derived to describe the molecular rotational processes giving rise to
the microwave and far infrared absorption bands of dipolar molecules in the liquid phase. The
absorption spectrum over ~3 decades of frequency is deduced by approximating the associated
orientational correlation function with a hierarchy of response functions (or memory functions).
These and the correlation function form a set of integro-differential equations called the Mori series.
By truncating this at a certain level, with an empirical function such as a single exponential of cor-
relation time 1/y, a spectrum can be calculated which contains equilibrium averages proportional
to the intermolecular mean square torque, <{o(v)?), its derivative <{é(v)*>, efc., depending on the level
at which the Mori series is truncated. The formalism is tested with the liguids CHF,, CCIF;, CBrF,
HC=CCHj, and the nematogen MBBA, a series chosen to cover the extremes of molecular isotropy
and anisotropy.

INTRODUCTION AND THEORETICAL CONSIDERATIONS

This paper aims to treat the microwave and far infrared absorption of dipolar
liquids and mesophases as a dynamical entity encompassing the peaks known as the
Debye and Poley absorptions. A spectrum is calculated by considering a simple
approximation to the orientational autocorrelation function Cy(f) in the classical
limit (4 — 0). In this condition C(¢) has a Maclaurin expansion in time which con-
tains no odd powers, which explains why the Debye representation, with its exponen-
tial C,,(?), is badly behaved at short times (i.e., at far infrared frequencies) and fails
to predict a return to transparency of the power absorption coefficient, a(w), (cf. the
Beer—Lambert law) on the high frequency side.

By considering a hierarchy of memory functions '* % (Ko, . . . , K;,), and terminating
this series at a high enough order, a correlation function C(#) is generated which is
Fourier-transformed to its associated spectrum Cp(—iw), where w is the angular
velocity. The expression for Cn(—i®w) contains two equilibrium averages, Ky(0)
and K(0), having the units of s—2, the former being a single molecule property, and
the latter being proportional to a mean intermolecular squared torque <o(v)?). In
addition it contains a correlation time y~! which is phenomenological. The averages
Ko(0), K,(0), ..., K,(0), n being the order of truncation, are related to the spectral
moments :

@
‘[ o"a(w) dw
0
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1170 MICROWAVE AND FAR I.R. AS AN ENTITY

of the absorption and are not independent variables. Their behaviour is restricted
by the fact that the total integrated intensity of all rotational type motions over
frequencies from static to ~250 cm~* produced by any formalism must be the same
as that observed for each molecule (Gordon’s sum rule ?).

The effect of truncating at second order, and of taking a Gaussian form for the
first order memory function K,(¢) is studied in relation to systems where the torques
are not Markovian, i.e., where states other than the last occupied by a process are
relevant in determining its future behaviour.

FORMALISM

The equation proposed by Langevin to account for translational Brownian motion
can be extended to describe the rotational (or trochilic) counterpart :

o+ po = T(), ¢y
where T'(¢) in this equation has the dimensions of angular acceleration, so that F(r)
= mI'(¢) is the stochastic or random, torque on a molecule of mass m due to its
neighbours. f is a friction tensor with the units of frequency, with w as the angular
velocity in rad s=!. In this representation F(¢) has the following properties :
(i) It is stationary in time,? with a Gaussian probability distribution.
(i) It has an infinitely short correlation time, so that :

CF0)-F(1)) = D&()

where 6(¢) is a delta function and D is the classical ! diffusion tensor.

(iii) No correlation exists between the kinetic moment of the molecule and the random
angular acceleration, so that :

(@O)}T(1)) = 0.
The autocorrelation function which eqn (1) yields upon direct integration is :
Co(t) = <0(0)-0(1)> = exp(—Br){a(0)-0(0)}, @

a pure exponential. Fourier inversion of eqn (2) leads to the Debye equations for
the complex spectral density S(®), given by :

S(@) = D/|(B+iw)>. 3)
By Doob’s theorem,!* ? the angular velocity probability distribution is rigorously
Markovian, so that it is unaffected by past events in the ensemble. This is the classical
treatment of Debye for liquid phase microwave absorption in liquids due to vestigial
molecular rotation of viscously damped molecules taking place by infinitely fast,
infinitesimally small, changes of angular velocity, so that all dynamical coherence
(including molecular inertia) is neglected.* The general theory of random processes
shows that the derivative |C,(?)[,~o must be well defined. This is not the case for
eqn (2), showing that the random variable F(¢), of infinitely short correlation time,
has no physical reality. These flaws manifest themselves experimentally # in the far
infrared (upwards from the microwave to ~250 cm~'), where eqn (3) produces the
Debye plateau in a(w), an asymptote that appears at about 20-50 cm=! and does not
return to spectral transparency. The observed absorptions in liquids are charac-
terised * by the Poley band of dipolar molecules (see figures) which rises well above
this plateau, transparency being regained at ~ 100 or 200 cm™'.
In this paper we link the microwave to the Poley absorption by considering a more
realistic model for the behaviour of F(¢). In general, it is required that: (i) F(¢) be

not necessarily Gaussian, and have a finite correlation time ; (ii) the friction tensor
B be dependent on time.
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These conditions are fulfilled by a more general form of the Langevin eqn (1),
proposed by Kubo and others: 2

t
d)(t)+j K (t—tHo() dt" = I(r) @)
(0]
where K(¢) is a time-dependent friction tensor, known as the memory function. As
for the simple eqn (1) :
@) =0; <a(0)r@) =0.
Starting from the modified Langevin equation, it is possible to show that :
t

d%((D(O) co()) = — [ K, (t—7){a(0) - (7)) dt’ +<{a(0) - T(1)). ®)

J 0

The memory function is the correlation function of the random torque, a result
known as the second fluctuation-dissipation theorem:

(e (0)-a(0)>K () = <T(O)T()). (6)

Rotational type 37 far infrared and microwave bands of dipolar molecules have
their associated time auto-correlation functions defined by : 7

C.(0) = <u(0) - u(t)>
@© . t)3flc O'(CU) do
J exp (o 472 w[1—exp (—ho/kT))

where o(w) is the absorption cross-section per molecule and « is a unit vector in the
dipolar axis. Using the classical limit of C,(¢) in eqn (5) gives :

Cu(t) = —jto Ky (t—1)C,(z") d7’ 8

with Ky(t—7") as the associated response function whose Fourier transform would
be the frequency dependent friction coeflicient.

It can be shown 2 that the set of memory functions Ky(?), . . ., K,(t) obey the set
of coupled Volterra equations such that :

t
g Kn-—l(t) = _j‘ Kn(t__TI)Kn—l(T,) dr’.
ot 0

Taking Laplace transforms :

@

—

. Ci(0) _ C(0) .
CalP) = p+Ko(p)  p+Ky(0) ©
p+K.(p)

This is Mori’s continued fraction representation of the correlation function
C,(1), p being the Laplace variable. The associated complex spectral density is
C..(—iw), the Fourier-Laplace transform of C(p), and can be obtained by truncating
the series of eqn (9) using a suitable form for K,(f). Itis shown below how the equili-
brium averages Ky(0), . . . , K,—1(0) are related to the terms in the even time expansion
of Cy(t), so that, for a linear molecule or a symmetric top, Ky(0) = 2kT/I; (where
Iy is the moment of inertia perpendicular to the dipole axis) i.e., is a single molecule
property, and K;(0) is related to the intermolecular mean square torque {o(v)>).
Any truncation of the series (9) that leaves out K,(p) and higher functions cannot
account for this torque without inbuilt singularities. Such is the termination Ky(z)
= Ko(0) exp(—y?), which corresponds to the M-diffusion model of instantaneous
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molecular collisions where the torque becomes infinite at the instant of impact, and
where the molecular angular velocity vector is randomised in direction. The J-
diffusion model,? in which ® is randomised in magnitude as well, is easily derived 16
using the truncation :

Ko(f) = TRK(0) exp(—yit])

where R K (0) refers to the function Ky(0) for a Gaussian ensemble of free rotors.
One of the simplest ways of introducing a finite {o(v)*) is to use the truncation : !

Ki(8) = Ky(0) exp(—7t) (10)

i.e., to truncate the series (9) at 1st order. In this work we investigate also the
spectral consequences of the 2nd order truncation :

- K1) = K;5(0) exp(—y1) an
and of taking the Gaussian function:

12
K1) = %KI(O) exp (—y*r?). (12)

FIRST ORDER TRUNCATION
(a) If K,(t) = K;(0) exp(—7?), then

KO
K1(P) = Pty
s0 that
B p*+py+K,(0)

The absorption coeflicient (neper cm~1) is given © by :
a(w) oc @?Re[Cr(—iw)]
i.e., is related to the real part of the Fourier-Laplace transform of C,(p). Thus:
0K (0)K 1(O)y
a;(w) o . 14
) & RO - 0 T + 0"~ K0 + K O] 9

When w* [with @ normalised in units of (2kT/I)*] is very small compared with 2
(normalised), which for common values of the parameters involved will occur for

frequencies @ < 10'* rad s~7, then eqn (14) reduces to the Debye-type spectrum of
eqn (3), i.e.:

) KoK, (0)y i)
Y2 K3(0)+ {K3(0)+ K3(0)+ 2K (0)[ K, (0) —y* T} ow?
if, and only if :
[Ko(0)+ K (0 > 2Ko(0)y2. (16)

This inequality imposes a restriction on the quantities K,(0), X;(0) and y of eqn(14).
The overall memory function [K,(?)] corresponding to Cp,(¢) is defined by :

Ka(p) = p+C-X(p) (7
so that eqn (10) implies that:
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K. () = Ky(0) e /2 [cos at+2y—a sin at] if K,(0) > y%/4

= Ko(0) e~ "2 [cosh bt+ 215 sinh bt] if K,(0) < y%/4 (18)

= Ko(0) e "2 [14-y1j2] if K,(0) = y*/4
with a* = —p? = [K,(0)—y?/4].

For the purpose of physical interpretation of the truncation at first order, it is
relevant to note that this form for K,,(¢) is the same as that ¢ for the angular velocity
correlation function derived from the M-diffusion model of a vibrator perturbed by
a Poisson distribution of collisions randomising the angular velocity vector in direc-
tion. Using the second fluctuation-dissipation theorem, it is clear that K(¢), the time
autocorrelation function of the random external torque, is M-diffuse in character.

This implies that we now have a well defined torque, but that its derivative (3(v)*)
is singular at the instant of collision. This is linked with the fact that the Maclaurin
cxpansion of our C(t) is even up to ¢*, but contains a term in t3, whereas classically 2
there is no #* term and (4(v)*) appears only in the #¢ coefficient. The Debye model
[Ko(p) = y] corresponds to a randomisation of molecular position at every collision
(no dynamical coherence—inertia being neglected ¢): the M-diffusion model [Kq(p)
= Ko(0)/(p+7)} is a randomisation of the direction of the angular velocity at every
collision; and the st order truncation is a randomisation of the direction of the
molecular angular acceleration vector. The torque correlation function K,(?) is no
longer exponential {eqn (18)] so the statistical behaviour of the torque is no longer
Markovian, i.e., the system at any future instant is influenced by past events.

(b) If K,(t) = %IK,(O) exp (—7%t?), then:

Rip) = K;(O) exp (p2/4y?) cxfe (p/2y) (19)

2 p2 w© i P 2n+1
where erfc (p/2y) = 1-—\%— exp (-Zﬁi) "‘éo l:————-——~——1.3 T Gng 1)(5) ]

Thus, substitution into eqn (12) gives, eventually :
0*Ko(0)K,(0)y™ " exp (—w?/4y%)

%) = FE 2" o\l 3
. z 2,2
{Ba) EO [I‘j“——“(znm(i;) ]—w +K0(0)} + A%

1(0) 2K,(0)

VEr

At low frcqucncics [ef eqn (14) and (15)]:
1—w?/4y?

[Bw?/2y —w®+K(0)]*+ 4*w?

. K3(0) B _ ) ]
;[Ko(o)z.,_ (4),2 +2K0(0)(2y 1Y+4

ich is Debye-type behaviour if, and only if,
0
[ SO, k104 % Ko(o>K1(o>] > 2Ko(O).

(20

with A = ——~ exp (—w?/4y*) and B =

2 (w) ~
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SECOND ORDER TRUNCATION
In this case :

K,(t) = Kx(0) exp(—7y1)

giving
0*yK(0)K(0)K5(0)
{0 oc {Vz{ws—w[Ko(0)+K1(O)]}2 n } (21)
{0* ~ 0 [Ko(0) + K 1(0) + K2(0)] + Ko(0)K ,(0)}?
which reduces to the Debye-type equation :
02K (0)K (0)K,(0) (22)
%) = {{VZ[K0(0)+K1(O)]2—2Ko(0)K2(0)[K0(0)+K1(0)+Kz(0)]}w2+}
K3(0)K3(0)

giving for this y a lower bound : ,
[Ko(0) + K1 (0)1%y* > 2Ko(0)K2(0)[Ko(0) + K;(0) + K> (0)].

It can be seen from eqn (14) and (21) that a(w) falls off more steeply on the high
frequency side as the hierarchy is truncated at higher order. This means a narrower
half width to the a(w) curve and thus a less damped oscillation in the time correlation
function C,(¢). For the sake of completeness, and in order to demonstrate the over-
all form of equations for «(w) derived from yet higher order truncation, we give a(w)
from the third order memory function below :

a(w) oc w?*yKo(0)K;(0)K,(0)K5(0)/D (23)
where :
D = y*{o* - 0?[Ko(0) + K1(0) + K2(0)] + Ko(0)K(0)} >
+ {0° = 03[Ko(0) + K (0) + K»(0) + K3(0)]
+ o[K,(0)K5(0) + Ko (0)K5(0) + Ko(0) K(0)]} >

SERIES EXPANSION OF THE CORRELATION FUNCTION
Gordon 7 has shown that C,(¢) has the form:
2n
C.(¢ a

where a, = 1 by definition, and successive a, are alternatively negative and positive.
From egn (9) it can be shown (appendix 1) that the memory functions Ky, K;, K5, . . .
must also take the form of eqn (24). Therefore :

24

[+'s] 2"
Ko9) = ; " (2n)!
@ t2"

K@) = ; Toy (25)
w0 t2n
Kz(t) = Z zk (2 )'
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Solving the first eqn (9) for °k, in terms of ay gives, for N > 1:
N

okN = =41 Z ky—n@n (26)

n=1
so that the coefficients %ky are known in terms of ay and their precursors. The first
two coefficients are given by :

%o = —a, = Ko(0) = 2kT/I, 27
%, = —a,—%koa; = at—a, (28)

so that Ko(?), K;(?) and K,(?) are determined analytically by the coefficients of C(¢) in
even powers of time through the use of the eqn (25). Thus:

ko = Ki(0) = a,—a,/a, (29)
ko = K,(0) = (a} —aias)/la,(az—a)l (30)
Darmon, Gerschel and Brot ® have shown that a,, a, and a5 are given in terms of
the experimental spectral moments | w"o(w)dw/N;, n =0, ..., m, with N, as the
0
molecular number density as follows :
a, = —EJ. o(v) dv (31a)
0
a, = 4nzczEJ. v2a(V) d¥ (31b)
0
a, = — 167t4c4E.J. v*a(v) dv (310
0
elc., where w = 2nvc, and :
3kTc?
E = 9 2+2)?
Lol + 7]

with p as the dipole moment, n,, the D-line refractive index, ¢ the velocity of light,
k the Boltzmann constant, and 7T the absolute temperature.

Thus eqn (14), (20) and (21) yield the power spectrum a(w) at all frequencies from
static to ~250 cm~! with two unknown variables y and K,(0), together with K,(0)
for second order termination of the series (9). Eqn (31) are used to ensure that the
observed and calculated integrated intensity per molecule agree, i.e., if Gordon’s sum
rule holds, the number of unknown parameters drops to one, the correlation time
y~!. However, there always remains the phenomenon of induced dipolar absorp-
tion, which gives rise to absorption in non-dipolar liquids and gases '° in the far
infrared, and which is present in the spectra of dipolar liquids as well. Ideally, this
ought to be subtracted from a(v) before calculating a, or a;, but since the dependence
of ¥ on « is unknown for induced dipolar absorption in general, this subtraction is in
practice possible only for a;, the single molecule property.

DISCUSSION

Sum rules for the permanent dipolar contribution to K;(0) and K,(0) have not
been developed, and it is known # 2 that in dense liquids, the integrals in eqn (3158)
and (31¢) will contain a 50 %, or more contribution from induced dipoles. However,

eqn (27) and (28) give
ay > B9 ()7 32)
37 2kT T \2kT
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for positive X,(0) and K,(0). Therefore, in calculating a(w) with eqn (14), (20) or
(21) we use eqn (31) and (32) as guidelines to K,(0) [and, when necessary, K,(0)] and
regard y~! as a free variable. The final fit to the experimental data is then carried
out by a least mean squares iteration.
The proportionality constant in eqn (14), (20) and (21) is given by :
4uNp®  (gg—ty)
3kTcV — n(i)e

which is corrected for internal field effects ® by the factor [(n% +2)*/9n,]. Ineqgn (33)
n(¥) is the frequency dependent refractive index, and (¢, — &) the dispersion over the

(33)

160
140
1201
100

80

afneper cm—!

60,

40

‘20,

o 120

v/em~?!

FiG. 1.—Observed and calculated [eqn (14)] power spectrum for liquid HCF; at 296 K. @ Exp.
(Baise '1); — eqn (14) with y, Ko(0) and K, (0) as in table 1.

1oy
o-aft\

0-6H

t/ps

Fic. 2. ——Fourier transform '# of «(v) !! normalised to unity at t = 0 for CHF,(I) at 296 K.
—~— (1) f(z) from eqn (35); (2) gas phase free rotor !® at 296 X ; (3) Larkin—Brot model * *3at
296 K.
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complete frequency span of absorption.* Eqn (33) is strictly valid where the molecule
under consideration is not strongly dipolar, since Brot ef al.® have shown that the
internal field correction is, in general, frequency dependent, and the loss factor &"(w)
is sensitive to the particular expression used (e.g., Lorentz or Onsager). However,
a(w) is much less affected by this correction when the original Lorentz or Onsager
expressions are applied to the case where not merely a single molecule, but rather a
group of intercorrelated molecules is constrained in the cavity for which the internal
field has been computed. Since we deal with autocorrelation functions, cross cor-
relations such as this can be represented only by a Kirkwood factor (g) in the numera-
tor of eqn (33).

Eqn (14) has been compared with the experimental absorptions observed in the
far infrared for liquid CHF,, CCIF; and CBrF;, pseudo-spherical species '!-
(fig. 1, 3, 5), and for liquid propyne *? a less isotropic, almost linear molecule (fig. 7).
The microwave data of Maurel and Price *3 for the nematogen N-(p-methoxybenzyli-
dene)-p’-n-butylaniline (MBBA), a very anisotropic molecule, have been fitted (fig. 9
and 11) using eqn (14), and the theoretical far infrared curve (fig. 9) generated there-
from. The comparison has been extended to the time domain (fig. 2, 4, 6, 8 and 10)
using the function ;8

_G0)-ay ([ -
f@) = m =1, o (o) cos ot dco/j0 o,(w) do (34)

.[derived from o;(w) of eqn (14)] in comparison ® with the direct Fourier transform

of the experimental a{(w) curves. In eqn (34) u is the unit dipole vector, and the

TABLE 1.—PARAMETERS OF EQN (14) FOR THE CURVES OF FIG. 1-11

10-12 o=

Z 5T molecule T/IK v K1(0) (Zrlﬂfﬂﬂ
CHF; 296 4 8 1 2.25
CCIF; 288 5.5 10 1 1.79
CBrF, 295 50 10.5 1 1.43
propyne 296 4 25 1 2.89
MBBA 340 2 200 0.78 13 1.44

a/neper cm™—*

) '
0 10 20 30 40 50 60 70 80 90 100 Mo

v/em™!
Fi1G. 3.—As for fig. 1 for CCIF, (I) '° at 288 K.
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unnormalised f{¢) is the negative of the second derivative of Cu(#). It is significant
that for propyne, both f(¢) and the corresponding experimental curve (fig. 8) show
pronounced short time oscillations,!® '* a phenomenon recently observed by Ger-
schel 5 in low temperature CHF;(1). The amplitude of these oscillations is inversely
proportional to the width of the a(w) curve in the frequency domain, and, therefore,

i
1

10y,
08
0

04

S SN TR HUY JUUY NN VAU JORE HUNE VU SO N SO U YU SN U S O
0 04 068 2 16§ 20 24 28 32 36 40

t/ps
Fig. 4 — —— As for fig. 2; - -— f(z) from eqn (35); ----. free rotor for CCIF; !? at 288 K.

o /neper cm™!

80 90 100 10

vjem~t
FI1G. 5.—As for fig. 1 for CBrF;(1) at 295 K.

directly related to K,(0). This means that the oscillations in f(f) are amplified as
the intermolecular mean square torque {o(v)?) increases, since, for symmetric tops : *®

kT\? I, 2
K,(0) o a; = S(K) (1 2 +§—2"—,(§)?Z-) (35)

where I, and I correspond to the well known rotational constants 4 and B.




f(®)

O

L
05 1-0 I'5 .20 2'5 30 35 40 45

t[ps

F1G. 6.— —— Asfor fig. 2; ———f(¢)from eqn (35); ++++- free rotor for CBrF, '° at 295 K.

08

0-6)

04

02

f@)

o /neper cm—!

40

35

30

25

20

i I 1 1

i 1 ] | - | i
0 200 40 60 80 100 {20 140 (60 180

vfem—!

FiG. 7.—As for fig. 1 for propyne (I) 12 at 296 K.

LI L L N I

t/ps

Fig. 8.— —— As for fig. 2; ~ - - f(¢) from eqn (35); for propyne 1 at 296 K.
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F1G. 9.—As for fig. 1 for MBBA (isotropic phase) at 340 K.
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t/ps
F16. 10.—f(¢) for MBBA at 340 K.

v/GHz

Fic. 11.—Loss curve calculated for MBBA at 340 K. Observed 13 e”(v) = 0.70, observed ** critical
frequency = 2.6 GHz; calculated [eqn (14)] = 2.7 GHz.
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In the extreme case of MBBA, the far infrared curve generated by eqn (14) from
the microwave fitting is very sharp, and centred at 130 cm~!. The corresponding
f(#) (fig. 10) oscillates violently in the 0-1.5 ps interval reflecting a very large {o(v)*)
and the very restricted range of torsional oscillatory frequencies available in compari-
son with the isotropic CHF;. The parameters y(s—!) and K,(0)(s~?) used for the
five molecules are given in the table in units of (2k7/gl)* and (2kT/gl) respectively,
so that K,(0) = 1 in each case.

The apparent mean square torques in MBBA : propyne : CBrF; : CCIF; : CHF,
decrease roughly in the ratio 200:25:10:10:8. This trend is the one expected on
the assumption that the greater the molecular geometrical anisotropy, the greater
the mean barrier to torsional oscillation. It is perhaps surprising that eqn (20) and
(21) do not describe the observed far infrared absorptions of the five molecules
studied here as well as eqn (14).  Both equations yield very sharp and intense func-
tions a(w) peaking at too low a frequency in comparison with that of the far i.r. maxi-
mum absorption. A combination of #» Gaussians as an approximation to the Ist
order memory function K, (¢) might lead to an equation similar to eqn (20) that would
be acceptable in comparison with experimental data but this would contain n un-
knowns y,. On the other hand eqn (21) contains K,(0), which is related to the torque
derivative,!- 17 [.e., contains a term in §, the time derivative of the angular accelera-
tion. This leads one to think of very hard collisions, with sudden changes of angular
velocity @ (or @); interactions which on this evidence are too abrupt for the liquid
state.

The final spectrum a(w) is therefore sensitive to the level of truncation of the
memory function series and to the precise form of K, (¢) if the cut-off is at first order.
K, (¢) ought to be an even function of time, whereas K,(0) exp(—7?)is not. However,
taking this form for K,(¢) ensures evenness in C(f) up to the fourth power in time.
(For comparison, truncating at zero’th order, with Ky(0) = y, introduces a term in
t in C,(?), the latter being now an exponential function.) Taking a form X,(t) =
K,(0) exp(—|yt|) would ensure evenness, except at £ = (. Other forms of K,(¢) are
discussed in appendix 2.

At low frequencies, the model gives Debye behaviour, and the microwave critical
frequency increases with temperature. The parameters y, K,(0) and X,(0) all depend
on temperature, and are related to the Debye correlation time (z,) by :

2 _ K@)+ K (O] ~2K,0)y*
P K3(0)y? '

Eqn (14) has the further property that as the microwave critical frequency increases,
the far infrared peak shifts to lower frequencies in order to conserve the overall
integrated intensity per molecule (4,). Therefore, from these considerations the
equation correctly describes the observed # shift in the far i.r peak to lower frequencies
as temperature rises, and the corresponding shift in the microwave peak to higher
frequencies. Furthermore, it has been observed that for a high {o(r)*) the microwave
and far ir. peaks are widely separated (fig. 9, 11) whereas for a low {o(v)?) (as in
CHF,;, CCIF,;, CBrF; and perhaps propyne), the two peaks are virtually fused,
since the microwave critical frequency is up to ~2-10 cm~! in these low density,
sub-critical liquids. It seems that <{o(v)?> decreases as the temperature increases ;
which means that “ free volume ” in the liquid (i.e., macroscopic expansion with
temperature) prevails over increased barriers to torsional oscillation as the tempera-
ture rises, and molecule * disorder >’ increases. On the other hand,'” for a harmonic
well, <o(v)*)> = ckT where o(v) = c0, and for hard forces, {o(v)*) ~ (N'/P)kT where
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N'is a force coefficient and ¢ is a mean angle of free rotation. To resolve the issue,
measurements are needed at varied 7 but constant density.

The effect of collision-induced absorption can be estimated as A; — A,,, where A,
is the Gordon sum rule estimate of the integrated mten51ty of all rotational type
permanent dipolar movements. For CHF;, this quantity is ~5 9% of 4., within
the experimental uncertainty,!? but for CCIF; it is larger,'® and for CBrF; is about
40 % of 4,. In propyne,itis ~306 9 of A;. For MBBA, 4, cannot be estimated
with certainty because Gordon’s estimate is for rigid rotors. Therefore, apart from
frequency dependent internal field effects ® (which will be small in the region of maxi-
mum absorption as n(w) goes through a minimum close to unity) it is justified to fit
eqn (14) directly to the experimental results for CHF; and perhaps CCIF;. 1In
propyne, it is reasonable to fit the lower frequency far i.r. data (10-40 cm—?) directly
and allow for the effect of induced absorption at the higher frequencies. In general,
the method would be to fit the experimental microwave peak as exactly as possible,
which would generate the far i.r. curve free of induced absorption. In MBBA, there
is the added problem of a series of intramolecular modes or overtones centred at just
above 200 cm™!, which partially obscure the librational mode at 130 cm~1. Future
work will centre on studies of the absorption, in these regions, of selected mesophases.

APPENDIX I

By Taylor’s theorem, assuming that K(f) is continuous, single valued, with continu-
ous derivatives up to K™(r) in a given interval @ < ¢ < b, and that K®+1(¢) exists in
a <1t<b,then:

=Y bn!
n=0

where b, is real.
Using: pC(p)—C(0) = — Ky(p)C(p) and eqn (24) then:

a, a a a, a bo by b
(ao+—§+—§,+--->——°s —( A W B X R bk )
pp p p pp p p P

Comparing coefficients of 1/p3, 1/p°, ... gives:
bl =b3=b5=...=0-

t2n

Thus Kq(f) = L b, — " Gl )1

APPENDIX 2

The function K,(#) = K,(0) exp(—y£)(1 +7y¢) has the property K (¢) - 0 as ¢t - o0,
and its Maclaurin expansion has no term in . Thus its limited time development is
more satisfactory even than the simple exponential of eqn (7). Subsequently, K,(#)
has a zero slope as ¢ = 0, and with:

Ki(p) = (p+20)K(0)/(p+7)*;
the power spectrum is given as:
293K K, 0*
[0*—@*( + Ky + Ko) +7°Ko* +40’y* [0 — (K, + Ko)T?

which already has a term in w?® in the denominator.

a(w) oc

o
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It is also instructive to consider K(f) approximated by a two parameter combina-
tion of exponentials ® such as:

K,(0)
(r1—72)
with 7, and t, linked via the equations:

11 (1 2)*
_ = "+ '_Z_CDO
T T \T

11 (; 2)*
T, T \T

where w, is the proper frequency. This has the short time expansion :
t2
K () = KI(O)[l —_— +0:3—‘
1T B

and is, therefore, better behaved as ¢+ — 0 than the simple exponential of eqn (7).
The corresponding spectrum is then :

K@) =

[z exp (—t/t)) =7, exp (—t/t,)]

1
() = 5[&)4K1K0(x1x2—y,y2)+w2K1Ko(y2x1 —P1%2)%2¥2]

where :
D= {w‘+w2[K1()’x_x1)_x2)’z_Ko]'*'Koxz)’z}z
+ {03(x; +y,) + oK1 (y1X2 — %1 Y1) — Ko{x, +y2)]} 2
with
Ty 1 T, 1
Xy = 5 Xy = —; = 5 Y2 =—.
T,—1T; L3 T1—71; T2

This equation is dimensionally identical to eqn (14), falls off as w~* at high frequen-
cies, and is, therefore, expected to compare favourably with experimental data. It
reduces to Debye type behaviour {C(z) a sum of exponentials] in the frequency region
where w* € w? in normalised units. A many parameter combination of exponentials
would lead to a series expansion which is even in powers of time.

APPENDIX 3

The authors are indebted to Dr. George Wyllie for the following remarks. The
widespread belief that « should end as w—2 is based on taking :

e—1 ~ 1/(iwt—w?)

with 7 constant at high frequency, on the assumption that the liquid then looks like
a glass with a small, possibly constant, viscosity. In the first place, this constant
viscosity is no more than a plausible guess. In the second, even if it is true, it can
be accounted for by putting the Fourier transform of the asymptotic ¢ above in the
relevant memory function.

The Mori expansion affords in principle the correct assignment of successive
moments of the spectrum and so of successive terms in an expansion of C(¢) in powers
of t2, This description does not give a natural picture of the very long time hydro-
dynamic tail of the auto-correlation function of angular momentum, decaying as a
fractional power of . One expects similar behaviour in C(¢), at least for spherical
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top molecules, but this should distort the spectrum only on the low frequency side
of the Debye absorption. %
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