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ABSTRACT 

By considering the Langevin equations governing the three-dimensional 

diffusion of a body that is simultaneously rotating and translating a number of 

new auto- and cross-correlation functions are established in both the 

laboratory and moving frames of reference. These provide a total of forty-four 

new ways of expressing the statistical correlation between rotation and 

translation. 

Two examples are given, using a computer simulation of liquid CH2C12 

at 296 K. The first is the auto-correlation function of the Coriolis 

acceleration, the second is a cross-correlation function of the type: 

<2&(t) x x(t) . x(o)> 

2&(o)> 4(o)> f 

INTRODUCTION 

The Langevin equations for the simultaneous rotational and 

translational motion of a diffusing molecule when written in frames of 

reference defined by that molecule's principal moment of inertia axes, lead to 

statistical cross-correlation between v, the centre of mass linear velocity, 

and w, the molecular angular velocity in the same frame 11-31. Furthermore, 

consideration of the terms appearing in these equations leads to the 

conclusion that the correlation between v and w can take a variety of forms, - - 

both in the molecular frame of reference, and in the laboratory frame. To my 

knowledge, only one or two of these new correlation functions have been 

considered in the literature C31. In this paper, they are demonstrated with 

reference to a computer simulation of liquid dichloramethane, examples being 

provided of some new types of correlation function. 

0167-7322/86/$03.50 0 1986 Elsevier SciencePublishers B.V. 
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THEORETICAL BACKGROUND 

It has been shown recently 11,21 that the Langevin equations that govern 

the diffusion of a molecule that is both rotating and translating must be 

written, to be useful, in frames of reference that move with the molecule. 

For convenience, these may be defined as the frame, (1,2,3), of the molecule 

principal moments of inertia and the frame (1,2,3)' rotating at the origin 

of the laboratory frame (x,y,z). In this frame, the equations involve 

Coriolis and centripetal accelerations, together with an acceleration term 

dependent on the non-uniformity of the rotational motion. They are: 

Ilbl - (Iz-13)w2w3 + IIDlwl = IlWl 

I&J - (13 - Il)W+ul + I262Q = IPi2 (2) 

r,w3 - (I, - I2)WlWZ + I3B3w3 = I3W3 

Eqns (1) and (2) are written with reference to the coordinate systems 

(1,2,3)' and (1,2,3) respectively. Eqn (1) is the translational Langevin 

equation in this frame and eqn (2) the rotational counterpart, sometimes known 

as the Euler/Langevin equation 141. Bv is the scalar translational friction 

coefficient, and 61,82and 63 the three scalar rotational friction 

coefficients. The position vector r is defined with respect to frame - 

(1,2,3)' as: 

[PI (1,2,3)' = [v1(l,2,3)V (3) 

The quantities 11, 12 and I3 are the three principal molecular moments of 

inertia; w 
iPW2 

and w 
3 

are the components in frame (1,2,3) of the molecular 

angular velocity, u. - These are identical in frame (1,2,3)'. Clearly, v , 

the molecular centre of mass velocity, and r are both defined in frame 
. .- . 

(1,2,3)‘. The random processes im, Wl, W2 and W3 are Wiener processes in 

these frames. The three components ,l, fi, and fi3 are defined as being 

statistically independent, but each is not statistically independent of the 

translational Wiener process fim because of the presence of the 

deterministic variable w in both equations. Eqn (2) can be written more - 

concisely as: 
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L.& +gx1. = &+g.L$=$, (4) 

where I is the principal molecular moment of inertia tensor, and 6 the = = 

rotational friction tensor. It is assumed implicitly from eqn (4) that both 

$ and g are diagonal in frame (1,2,3). These quantities are both 

dependent therefore, only on the molecular symmetry. In the same way that f 

can be generated from m, the friction tensor 0 5 can be generated from Bv by 

consideration of the molecular symmetry alone. 

I* eqn (11, the Coriolis acceleration is 20 x v, the centripetal - 

acceleration is w x (w x K), and the acceleration ; x r is non-zero if - _ 

; * 0, _ which is always the case in the presence of inter-molecular torques. 

None of these terms appears in the conventional treatment of either 

rotational or translational molecular diffusion. 

By inspection of eqns (1) and (4), the following eight terms are 

involved in the description of the molecular diffusion in frames (1,2,3) and 

(1,2,3)': i) i ; ii)2% x x ; (iii)k x (* x 6); iv) B v ; v- V)B”$ x z; 
vi) I . g ; vii)% x ; . * ; viii) g . f+ . Computer simulation has 

already revealed C2-4J that a statistical correlation exists between the 

tensor product of term iv) and term viii). This has been quantified [21 in 

frame (1,2,3) for many molecular symmetries with the cross-correlation matrix 

<,v(t)~T(o)' . Results are also available on the statistical cross- 

correlation between terms i) and vi), essentially the molecular force and 

torque in.frame (1,2,3). 

This paper aims to show that similar cross-correlation functions in 

frames (1,2,3) and (1,2,3)' exist between all the eight terms listed above. 

Clearly, each of these vectors also generates its own time auto-correlation 

function in both these frames. For example, there exists in frame (1,2,3) the 

auto correlation function of the Coriolis acceleration: 

C 
Cor 

= <(2%(t) x x(t)) * (2~(0) x $0))’ (1 2 3) (5) 
,, 

and so on. Therefore the correct description of the Langevin dynamics of a 

simultaneously rotating and translating body in frames (1,2,3) and (1,2,3)' 

suggests the existence of a number of new auto and cross-correlation functions. 

This suggestion is followed up in this paper with a computer simulation of 

these correlation functions for liquid dichloromethane at 296 K. 
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The nature of the new cross-correlation functions can be clarified if we 

write the laboratory frame equivalent of eqn (1) : 

ri + B VI 
VQ h,Y,Z) = %‘(x y 2) (6) , 9 

where (x,y,z) defines the static, laboratory frame of the observer. Eqn (6) is 

generated from eqn (1) with the frame transformations: 

[“‘(X,Y,d 
= Cv, + e x rl 

s (1,2,3)' 
(7) 

of elementary dynamics. The existence of the well-known laboratory frame 

correlation functions <x(t) . x(o)> 
(x,Y,z); 

c?(t) . i(o)> 
(X,Y,Z) and 

<i(t) . W>(x,y,z) 
immediately implies, from identities (7) and (8) the 

existence in frame (1,2,3) of the following new auto and cross-correlation 

functions: 

i) <(x(t) + t(t) x c(t)) f (~(0) + ~(0) x g(~))>(~ 2 3), 

, I 

= <x(t) . x(o)> (1,2,3)' + <x(t) * k(O) x @P(l,*,J)! (9) 

+ y(t) x &CO . x(ob(1 2 3), + <t(t) x g(t) . t(o) x @)>(l 2 3)’ 
9 , , 9 

ii) (i(t) + Zy(t) X x(t) + i(t) X E(t) + t(t) X ($-J(t) x t(t))) 

*(i(o) + Zg(o) x x(o) + $0, x z(o) + z(o) x (t(o) x p)P(l 2 3)’ 
, 3 

= $1 . $o)> (1,2,3)’ + <xct) ’ q(o) x ~w’(1,J3), 

+ $t) . @o) x ~(o)>(1,2,3)’ + <x(t) . &CO) x (g(o) x &b))‘(1,2,3), 

+ <2t(t) x x(t) . $o)>(l 2 3), + <Zt(t) x x(t) . 2!4(0) x $o)>(1,2,3)’ 
I , 

+ <2$0(t) x x(t) . i(o) x ~(o)>(l 2 3)’ + <2x(t) x x(t) . t(o) x 
, 3 

Q+(o) x &b))‘(1,2,J)’ 

+ q$(t)x&(t) .;i1(o)>(1,2,J) I + <@(t)xq(t) .2~bbyb)>(1,2,3) 1 
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+ <~(t)Xf(t).~(0)X~(O)>(l,*,3), + q(t)y,(t) .p$o)x(~(o)x~b))> 
(1,2,3)' 

+ y(t)x($(t)x~(t)) .$o)> (1,2,3)’ 
+ <2(t)x(@t)xz(t)) .2~b)xp)>(l 2 3) I 

9 9 

+ ~~(t)x(~(t)x~(t)).~(o)xro~ 
(1,2,3)’ 

+ <t(t)x($$t)xz(t)) .~(O)X(~b) 

x f(o))'(1,2,3)$ (10) 

iii) <(t(t)+2g(t)Xx(t)+$(t)X&(t) + t(t)x(t(t)xz(t))) 

* ($0) + k(O) x &b))>(l,2,3)’ 

= <p).x(0)>(1,2,3), + <2~!t)x~(t).~(o)‘(l,2,3), 

+ q(t)xE(t) “c(o)>(1,2,3) 1 + <e(thQ(t)q(t)) .@q1,*,3)1 

+ <t(t) .&(o)x&(o)‘(l,2,3) 1 + ‘Q!&(t)qyt) .~b)x~b)‘(1,2,3)~ 

+ ci(t)xc(t) .~b)x~b)‘(1,2,3) 1 

+ <t(t) x ($t) x K(t)) . $0) x E(O)'(l 2 3)' 
, , (11) 

Therefore, there are at least twenty-four available moving frame correlation 

functions to describe the simultaneous rotation and translation of a 

diffusingasymmetric top molecule as governed by eqns (1) and (2). The 

function defined on the left hand side of eqns (9) and (10) exist at t = 0, 

because they are generated from auto-correlation functions. On the other 

hand, those on the right hand side of eqn (11) are generated from the 

laboratory frame cross-correlation function <x(t).x(o) 
(X,Y,Z) 

which 

vanishes at the origin (t = 0). Therefore, the six correlation functions 

on the r.h.s. of eqn (11) vanish separately at t = 0. (This is illustrated 

later in fig. 3). 

Of these twenty-four moving frame correlation functions, only the simple 

auto-correlation functions <x(t).x(o)> 
(1,2,3)' 

and <$(t).x(o)>(l,2,3), 

seem to have appeared in the literature. The nature of the other twenty-two 

seems to be unknown, but can be investigated by computer simulation. Examples 

are provided in this paper. 
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If we now start to consider eqn (4), this is generated by frame 

transformations similar to eqns (7) and (8), viz: 

W(x y 2.) ! W(l 2 3) (12) 
, , 3 , 

CI.lil 
= ‘i, (X,Y,Z) 

q [I.$$ + $ x I . WI = Q (1,2,3) (13) 

Eqn (12) follows because the molecular angular velocity, iii, is also the angular 

velocity of one frame with respect to the other, which is the same to an 

observer in frame (1,2,3) or an observer in frame (x,y,z). Eqn (13) follows 

from the elementary theorem of frame transformation: 

= 14 + & x Al 
21 (1,2,3) (14) 

where A is a vector quantity. - 

Now, it is known that in the laboratory frame of reference, (x,y,z): 

<x(t) . t(o)> (X,Y,Z) = O for all t, (15) 

<t(t) . (f . t(o))> 
(X,Y,Z) 

= 0 for all t (16) 

These are the Berne/Pecora theorems [5l which are proved because the sign of v _ 

is reversed by parity reversal, and that of w remains the same. - 

From eqns (7), (12) and (15), it follows that 

<(x(t) + $0 x c(t)) . @d>(l 2 3), = 0 
, 1 

Therefore, eqn (17) provides the results: 

(17) 

<v&t) . &(')'(1,2,3) = " for all t (18) 

et(t) x E(t) . x(o)>(~ 2 3), = 0, for all t (19) 
, 1 

Eqn (18) proves that the three diagonal elements of the moving frame tensor: 

<$t)$T(0)‘(l,2,3) % 0 (20) 
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are all zero for all t. Computer simulation has shown, however, that the 

off-diagonal elements of eqn (20) are not necessarily zero for t > 0. 

In the laboratory frame (x,y,z), we have the result, from computer 

simulation: 

<~(t)i(lT(0)>(._) = 2 for all t 

Eqn (21) seems to be true for all molecular symmetries provided the 

Hamiltonian is invariant to parity reversal 151. From eqns (7), (12) and 

(21), it follows that: 

<(x(t) + t(t) x @))wT(o)> 
(1,2,3)' = 2 

for all t 

However, we know that: 

<V$t)~T(0)>(1,2,3)' f 0, t ' 0, 

from eqn (20), and it follows from eqns (22) and (20) that: 

'x(t)xT(o)>(1,2,3), = - <(k(t) x @))~Tb)>(l,2,3), 

THEOREM 

In the moving frame of reference (1,2,3)' the off-diagonal cross- 

correlation elements of the "Coriolis Correlation tensor" 

<$t)eT(0)'(l 2 3)' are equal and opposite to those of the "centripetal 

correlation tAn;or" - <(w(t) x &(t))~T(o)>(l,2,3), 

If we note that, for each molecule in the ensemble: 

t(t) x g(t) = - E(t) x t(t) 

then it follows that: 

<$t)~Tb)>(l,2,3) 1 = <(z(t) x $t))~T(+(1,2,3)~ 

(21) 

(22) 

(23) 

(24) 

(25) 
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‘(k 

(f 

(t) + 2~(t)x~(t) + $(t)x:(t) + @9x(@)x~w)~(1 * 3), 

9 3 

. $(o, + $$o) x I . t(o)) (1,2,3)> =o = (26) 

This result may be obtained if it is assumed that all the component 

correlation functions of the 1.h.s. of eqn (26) vanish separately in the 

moving frame of reference. It is known already from computer simulation that 

<i(t) . f * @')'(1,2,3) = ' (27) 

but the nature of the other terms from eqn (26) is not yet known. 

Finally, note that: 

<t(t) (f . @b))T> 
(1,233) 

#O (t>O) (28) 

which implies that the tensor product is analogous to the vector product, 

eqn (26) also generates symmetry theorems analogous to eqns (23) or (25). 

NEW CORRELATION FUNCTIONS IN THE LABORATORY FRAME OF REFERENCE 

The relativity of frame transformation implies that identities (7), (S), 

(12) and (13) can be reversed, i.e.: 

q, 2 3)' s cv, + t x &1(x y a) , I , 9 

Q'(l 2 3)' , , 
C$ + 2% x x + & x ;E + e x ( x r)I(x,y,z) 

(29) 

(30) 

I$(, 2 3) s '@(, y z) s [G(l 2 3)' (31) 
, 3 , , 9 9 

In elementary dynamics, it is well-known that some frame transformations 

are "inertial", and some are "non-inertial". ("Inertial" in this context 

should not be confused with "inertial", as in "moment of inertia"). A 

rotating frame of reference is "non-inertial" with respect to a static 

frame, and eons (7), (8), (12) and (13) or (29)-(32) define this property for 

linear and angular velocity and acceleration. (These identities can be 
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visualised by thinking, for example, of the horizon as seen from a turning 

aircraft. The horizon seems to be rotating to a passenger seated in the 

aircraft. The principle embodied in these identities is sometimes known as 

Galileo's relativity principle, although this is strictly applicable only to 

a frame (x', y', z') that translates uniformly with respect to frame 

(x,y,z), and does not rotate relative to the latter. This is an 

"inertial frame"). 

I have risked labouring this point because identities (29)-(30) 

immediately provide us with a large number of new laboratory frame 

correlation functions which describe the statistical correlation between a 

molecule's rotational movement and its own centre of mass translation 

directly in the laboratory frame of reference (x,y,z). 

These are generated simply by taking the various possible moving frame 

correlation functions from among the vectors on the l.h.s.'s of eqns (29) to 

(32). (These moving frame correlation functions exist, of course, for 

t 2 0.). For example: 

q(t) .$+(l,J3) 1 = <(x(t)+@t)xz(t)). (~(o)+@)x~(o))’ 
(X,Y,Z) 

= <x(t) .@o)>(x,y,z) + <~(t)xg(t).~(o)‘(x,y,,) 
(33) 

+ <~(t).~(o)x~(o)‘(,,y,Z) + ~~(t)x~(t).~(o)x~(o)~(x,y,z) 

The group of correlation functions on the r.h.s. of eqn (33) is the 

laboratory frame equivalent of eqn (9). It follows therefore that all the 

twenty-four moving frame correlating functions in eqns (9), (10) and (11) also 

exist in the laboratory frame. This brings the total of available 

correlation functions to forty-eight. The existence of all forty-eight of 

these functions has been deduced in this paper from first principles; and 

they are generated once we start to consider the Langevin dynamics of a 

molecule that is simultaneously rotating and translating. As far as I am aware, 

none of these appears in the literature on molecular diffusion, with the 

exception of the simple auto-correlation functions of v and ir. These simple - - 

autocorrelation functions can, of course, be calculated from the 'traditional' 

approach to Langevin dynamics, involving 'decoupled' translation. It becomes 

clear, therefore, that the traditional approach misses no less than forty- 

four out of the forty-eight correlation functions considered so far in 

this paper. 
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Some of the auto-correlation functions missed in this way are those of 

fundamental molecular dynamical quantities such as the Coriolis 

acceleration, the centripetal acceleration and so forth. The existence of 

these correlation functions in both frames: (x,y,z) and (1,2,3) is 

illustrated later in this paper by computer simulation. These a.c.f.'s are 

as important (both in magnitude and time dependence) to a full description 

of the molecular dynamics as those of v (or w) themselves. To leave them out _ _ 

of consideration is simply not a valid approximation. 

Finally in this section we point out that the result [2,31: 

‘@)yT(d>(l,2,3) * O (t > 0) 

Fmplies the existence, from identities (29) and (31), of yet more 

laboratory frame tensor cross-correlation functions, whose off-diagonal 

elements may be non-zero for t > 0. Similarly, another group of laboratory 

frame tensor correlation functions can be generated from the result: 

$t) Q . &(oHT> 
(1,2,3) ’ O 

(t > 0). 

These two last groups are subject, however, to the general constraints imposed 

by laboratory frame parity reversal symmetry, mentioned already, and first 

discussed [5? by Berne and co-workers. 

COMPUTER SIMULATION ALGORITHMS 

One of the simplest types of asmetric top has been chosen to illustrate 

some of the new correlation functions described analytically already. This 

is CH Cl modelled in a 3 x 3 Lennard Jones and charges site-site 
2 2 

representation of the intermolecular potential. The group was considered as 

a moiety. The parameters were: E/k(Cl-Cl) = 173.5 K; c/k(CH2-CH2) = 70.5 K; 

o(CH2-CH2) = 3.96 8; o(Cl-Cl) = 3.35 8; qC1 = - 0.15 le/; qCH = 0.30 lel. 

The input temperature was 296 K, the input molar volume was 8.6 x lo-5 m-3 for 

108 molecules. The algorithm was TRIZ, which has been modified by 

Ferrario and Evans C61 and is described in the literature. Approximately 

1000 records (one segment of 3000 time steps of 5 x lo-I5 set) were used to 

build up an individual correlation function, either in the laboratory or 

moving frame. 
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A given vector $ could be defined either in frame (x, y, z) or in frame 

A1 = *yely + Azelz 

*2 
= Axe2x + A e 

Y 2Y 
+Ae 

z 22 (34) 

A3 
= Axe3x + A e 

Y 3Y 
+Ae 

z 32 

where 21, c2 and c3 are unit vectors in the axes 1, 2 and 3 of frame (1,2,3). 

Using this method, any correlation function can be constructed in either 

frame. The correlation functions were computed by standard running-time 

averaging [4 1 of data generated in the computer simulation runs, and stored 

on disk or tape. Many examples of vector and tensor correlation functions 

generated in this way are now available in the literature. C2-41. 

RESULTS AND DISCUSSION 

Given enough computer power, it is perfectly possible to illustrate all 

forty-four new correlation functions mentioned already. However, it is 

sufficient to illustrate them and confirm their existence with two examples: 

one of an auto-correlation function and the other a vector cross-correlation 

function. 

Fig l(a) illustrates the autocorrelation functions of the molecular 

Coriolis acceleration in frame (x, y. 2) (curve 11, and frame (1,2,3) (curve 2). 

These auto-correlation functions are normalised to unity at the origin, but 

clearly, their magnitude depends on the cross product of w and v, and this is - 

therefore fully comparable with those of the simple a.c.f.'s <x(t).v,(o))> and 

<g(t).$o)>. The latter are illustrated for convenience in figs l(b) and l(c). 

A good check of self-consistency is the expected result: 

<q(t) .$go)> = <g(t) .8(O)> 

<02(o)> (X,Y,Z) ild2(o)> (1,2,3) 

(35) 

These normalised a.c.f.' s from the computer simulation are indeed almost 

indistinguishable on the scale of fig l(b). This is the result expected from 

identify (12). The same is not true, however, of the linear, centre of mass, 
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velocity a.c.f.' s in fig l(b), as expected from identity (7). This means that 

the Coriolis acceleration a.c.f.' s in fig l(a) have different time dependencies 

in frames (x,y,z) and (1,2,3). In the latter frame, there is a negative 

overshoot, which is not there in frame (x, y, z). 

I J 

0 0.3 0.6 0.9 ps 
Figure l(a) 

Coriolis autocorrelation functions in (1) the laboratory frame; 

(2) the moving frame 

Figure l(b) 

Angular velocity autocorrelation function (1) Laboratory frame; 

(2) moving frame. The two correlation functions are identical within 

the noise. 

Figure l(c) 

Linear centre of mass velocity 

frame; (2) moving frame. The 

different in time dependence. 

autocorrelation function (1) Laboratory 

two correlation functions are distinctly 
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Fig (1) therefore illustrates the distinct identities taken by this 

particular auto-correlation function in frames (x, y, z) and (1, 2, 3). This 

result confirms the analysis based on eqns (1) and (Z), which are therefore 

valid descriptions of the diffusion of a molecule that is simultaneously 

rotating and translating. The existence of the functions illustrated in 

fig l(a) was deduced directly from eqns (1) and (2) without further 

assumptions of any kind. Therefore it is no longer acceptable in the light 

of these results to base the description of molecular diffusion on 

tranditional "decoupled" translational or rotational Langevin equations. 

It is necessary to solve eqns (1) and (2) as simultaneous equations - a 

formidable but far from impossible task. 

Note that the use of elementary vector analysis produces the result: 

<(x(t)y(t)) * (~(O)XJ(((O))> = <x(t) .$o)!+J(t) .t(o>> - <v,(t) .LLl(o)c$(t) .x(o)> 

(36) 

in both frames of reference. I have checked by computer simulation that the 

"straight" and "mixed" components on the r.h.s. of eqn (36) both exist, in both 

frames, and have similar, but distinct, time dependencies. Both components, 

being second order in v and w, exist at t = 0 in both frames. _ 

Similarly, elementary analyses of this kind can be carried out on all the 

forty-four new correlation functions defined in this paper, thus generating 

some hundreds of new and distinct correlation functions with which to 

characterise simultaneously rotating and translating molecules in an ensemble 

at thermodynamic equilibrium. An analytical solution of eqns (1) and (2) must 

be capable of describing these results self-consistently in both frames if it 

is to be acceptable. A fuller description, involving memory functions, must 

use generalisations of eqns (1) and (2). The most powerful theory at the 

moment seems to be the Reduced Model Theory of Grigolini and co-workers 171. 

Finally in this section on the molecular Coriolis acceleration it is 

instructive to consider the effect on its auto-correlation function of a strong 

z-axis electric field. This can be achieved using the new technique of 

"field-effect computer simulation" of molecular liquids 121 . An electric 

field strong enough to saturate the Langevin function, and to align the 

molecules in the field direction produces the results illustrated in fig (2). 
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Figure (2) 

a) Laboratory frame Coriolis functions in liquid dichloromethane 

subjected to an intense z axis electric field. 

<x(t) .~(t)@) .&b)’ 
. . . . . . . . 

$0) .@o)p$o) .@J) 

b) As for fig Z(a), moving frame. 
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The a.c.f. of the complete Coriolis a.c.f. (the 1.h.s. of eqn (36) is now 

highly oscillatory and shows the Grigolini decoupling effect [71, i.e. is 

longer lived than its field-off counterpart in fig (1). The a.c.f.'s both 

in frames (x,y,z) and (1,2,3) are now virtually identical, because the 

molecular Coriolis acceleration is dominated by the oscillatory nature of the 

molecular angular w . However, it is now easy to see in both frames the - 

distinctly different time dependencies of the components on the r.h.s. of 

eqn (36). Again, these two components are identical on the scale of 

fig (2), in both frames. 

A NEW CROSS-CORRELATION FUNCTION 

I have chosen for illustration from among the new cross-correlation 

functions of group (11) the simple type: 

c+(t) x x(t) . X(O)’ 
C 

Crossct) = 2<w2~oj,? 
<“2(O)> 

(37) 

conveniently normalised by the denominator. This function has an existence in 

the moving frame of reference, as illustrated in fig (3). It vanishes in both 

frames at t = 0, but in marked contrast to the a.c.f. of the Coriolis 

acceleration the moving frame function (1,2,3) exists (fig 3(a)), but the 

laboratory frame function (x,y,z) does not (fig 3(b)). The laboratory frame 

function therefore vanishes by syamretry restrictions akin to the Berne- 

Pecora Theorem. 

An interesting and suggestive result of the computations in the maying 

frame (fig 3(a)) becomes clear if the roles of v and I are interchanged, thus 

generating the function: 

Cl(t) = <x(t) x t(t) . g(o)> / (<v2(o)>i <w2(o)>). (38) 

This function vanishes in both frames ((1,2,3) and (x,y,z)). The Coriolis 

acceleration v(t) x E(t) is unchanged (except for sign) in eqns (37) and (38), 

but the cross-correlation function <x(t)xg(t).e(o)> does not appear in 

group (11) and the basic equations of motion ((1) and (2)) do not predict 

its existence, in contrast to function (37). This is strong corroborative 

evidence therefore for the validity of the initial equations (1) and (2). 



Figure 3 

(a) The cross-correlation function: 

<g(t) x x(t) . x(o)> 

<I@) I v2(ob 

in the moving frame. 

--------- In contrast, the cross-correlation function 

<x(t) x t(t) . j+!(o)> 

+w l&o)> 

does not exist in the moving frame,_ because this does not appear in 

group (11). 

(b) The cross-correlation function: 

<x(t) x t(t) . x(o)> 

+0(o) 1 v2(o)> 

in the laboratory frame of reference. The Hatched area 

denotes the difference between two successive segments. 
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These functions are unknown in the conventional approach to molecular 

diffusion, using "decoupled" rotational and translational Langevin 

equations but provide us with subtle new insights to the ensemble statistical 

correlation between molecular rotation and translation. 
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